
www.manaraa.com

Program Analysis and Specialization
for

the C Programming Language

Ph.D. Thesis

Lars Ole Andersen

DIKU, University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen Ø
Denmark

email: lars@diku.dk

May 1994

www.manaraa.com

Abstract

Software engineers are faced with a dilemma. They want to write general and well-
structured programs that are flexible and easy to maintain. On the other hand, generality
has a price: efficiency. A specialized program solving a particular problem is often signif-
icantly faster than a general program. However, the development of specialized software
is time-consuming, and is likely to exceed the production of today’s programmers. New
techniques are required to solve this so-called software crisis.

Partial evaluation is a program specialization technique that reconciles the benefits
of generality with efficiency. This thesis presents an automatic partial evaluator for the
Ansi C programming language.

The content of this thesis is analysis and transformation of C programs. We develop
several analyses that support the transformation of a program into its generating ex-
tension. A generating extension is a program that produces specialized programs when
executed on parts of the input.

The thesis contains the following main results.

• We develop a generating-extension transformation, and describe specialization of
the various parts of C, including pointers and structures.

• We develop constraint-based inter-procedural pointer and binding-time analysis.
Both analyses are specified via non-standard type inference systems, and imple-
mented by constraint solving.

• We develop a side-effect and an in-use analysis. These analyses are developed in
the classical monotone data-flow analysis framework. Some intriguing similarities
with constraint-based analysis are observed.

• We investigate separate and incremental program analysis and transformation. Re-
alistic programs are structured into modules, which break down inter-procedural
analyses that need global information about functions.

• We prove that partial evaluation at most can accomplish linear speedup, and develop
an automatic speedup analysis.

• We study the stronger transformation technique driving, and initiate the develop-
ment of generating super-extensions.

The developments in this thesis are supported by an implementation. Throughout the
chapters we present empirical results.

i

www.manaraa.com

Preface

This thesis is submitted in fulfillment of the requirements for a Ph.D. degree in Com-
puter Science at DIKU, the department of Computer Science, University of Copen-
hagen. It reports work done between February 1992 and May 1994. Supervisor was
Prof. Neil D. Jones, DIKU, and external examiner was Dr. Peter Lee, Carnegie Mellon
University.

The thesis consists of eleven chapters where the first serves as an introduction, and the
last holds the conclusion. Several of the chapters are based on published papers, but they
have either been extensively revised or completely rewritten. The individual chapters are
almost self-contained, but Chapter 2 introduces notations used extensively in the rest of
the thesis.

An overview of the thesis can be found as Section 1.5.

Acknowledgements

I am grateful to my advisor Neil D. Jones for everything he has done for me and my
academic career. Without Neil I would probably not have written this thesis, and he has
always provided me with inspirations, comments, and insight — sometimes even without
being aware of it. Further, Neil has founded the TOPPS programming language group at
DIKU, and continues to enable contacts to many great people around the world. Without
the TOPPS group, DIKU would not be a place to be.

I would like to thank Peter Lee for his interest in the work, and for useful feedback,
many comments and discussions during his stay at DIKU.

Special thanks are due to Peter Holst Andersen. He has made several of the experimen-
tal results reproduced in this thesis, and spent many hours on correcting (embarrassing)
bugs in my code.

Olivier Danvy deserves thanks for his enthusiasm and the very useful feedback I re-
ceived while wrote the chapter to the Partial Evaluation book. His comments certainly
improved the book chapter, and have also influenced the presentation in this thesis, —-
and my view of computer science.

I would like to thank Robert Glück for his continued interest in this work, and for
many useful discussions about partial evaluation and optimization. Furthermore, I would
like to thank Carsten Gomard; the paper on speedup analysis was written together with
him.

Warm thanks go to the members of the TOPPS programming language group and its

ii

www.manaraa.com

visitors for always providing a stimulating, enjoyable and also serious research environ-
ment. Its many active members are always ready to provide comments, share ideas and
interests, and have created several contacts to researcher at other universities. The many
“chokoladeboller”-mornings have clearly demonstrated that the TOPPS group is much
more than just a collection of individual persons.

From the undergraduate and graduate days I would especially like to thank Jens
Markussen. It was always fun to make written project, and later has many beers reminded
me that there also is a world outside TOPPS and DIKU.

Lars K. Lassen and Berit Søemosegaard have, luckily!, dragged me away from boring
work an uncountable number of times. It is always nice when they come by and suggest
a cup of coffee, a beer, a game of billiard . . .

Finally, I would like to thank my parents and the rest of my family for everything they
have done for me.

This research was supported by grant 16-5031 (“forskningsstipendium”) from the Dan-
ish Research Council STVF, and by the SNF research project DART, the EC ESPRIT
BRA “Semantique” and DIKU.

iii

www.manaraa.com

Contents

Preface ii

Acknowledgements ii

1 Introduction 1
1.1 Software engineering . 1

1.1.1 From specification to deliverable . 1
1.1.2 The problem of excess generality versus efficiency 2
1.1.3 Executable specifications . 3
1.1.4 Generality in programs . 3
1.1.5 Computation in stages . 5
1.1.6 Specialization applied to software development 6

1.2 Program specialization and partial evaluation 7
1.2.1 Programs, semantics and representations 7
1.2.2 The Futamura projections . 7
1.2.3 Generating extensions . 9

1.3 Program analysis . 9
1.3.1 Approximation and safety . 10
1.3.2 Type-based analysis specifications 10
1.3.3 Program analysis techniques . 11

1.4 Contributions . 12
1.4.1 Overview of C-Mix . 13
1.4.2 Main results . 13
1.4.3 How this work differs from other work 14
1.4.4 Why C? . 15

1.5 Overview of thesis . 16

2 The C Programming Language 17
2.1 Introduction . 18

2.1.1 Design motivations . 18
2.1.2 Conforming and strictly-conforming programs 19
2.1.3 User feedback . 20
2.1.4 Program representation . 20
2.1.5 Notation and terminology . 21
2.1.6 Overview of the chapter . 21

iv

www.manaraa.com

2.2 The syntax and static semantics of C . 21
2.2.1 Syntax . 21
2.2.2 Static semantics . 23
2.2.3 From C to abstract C . 25

2.3 A representation of C programs . 25
2.3.1 Program representation . 26
2.3.2 Static-call graph . 27
2.3.3 Separation of types . 29

2.4 Dynamic semantics . 30
2.4.1 Notations and conventions . 31
2.4.2 Semantics of programs . 31
2.4.3 Semantics of functions . 32
2.4.4 Semantics of statements . 32
2.4.5 Semantics of expressions . 35
2.4.6 Semantics of declarations . 36
2.4.7 Memory management . 37
2.4.8 Some requirements . 37

2.5 Related work . 38
2.6 Summary . 38

3 Generating extensions 39
3.1 Introduction . 40

3.1.1 The Mix-equation revisited . 41
3.1.2 Generating extensions and specialization 42
3.1.3 Previous work . 44
3.1.4 Overview of chapter . 45

3.2 Case study: A generating string-matcher 46
3.2.1 The string-matcher strstr() . 46
3.2.2 Binding time separation . 47
3.2.3 The generating extension strstr-gen() 48
3.2.4 Specializing ‘strstr()’ . 52

3.3 Types, operators, and expressions . 52
3.3.1 Constants . 53
3.3.2 Data types and declarations . 53
3.3.3 Operators . 54
3.3.4 Type conversions . 54
3.3.5 Assignment operators . 55
3.3.6 Conditional expressions . 56
3.3.7 Precedence and order of evaluation 56
3.3.8 Expression statements . 56

3.4 Control flow . 57
3.4.1 The pending loop . 57
3.4.2 If-else . 58
3.4.3 Switch . 60

v

www.manaraa.com

3.4.4 Loops — while, do and for . 61
3.4.5 Goto and labels . 62

3.5 Functions and program structure . 63
3.5.1 Basics of function specialization . 63
3.5.2 Functions and side-effects . 65
3.5.3 Recursion and unfolding . 66
3.5.4 External variables . 67
3.5.5 Static variables . 68
3.5.6 Register variable . 68
3.5.7 Initialization . 68

3.6 Pointers and arrays . 68
3.6.1 Pointers and addresses . 68
3.6.2 Pointers and function arguments 69
3.6.3 Pointers and arrays . 70
3.6.4 Address arithmetic . 71
3.6.5 Character pointers and functions 72
3.6.6 Pointer arrays, pointers to pointers, multi-dimensional arrays 72
3.6.7 Pointers to functions . 73

3.7 Structures . 75
3.7.1 Basics of structures . 75
3.7.2 Structures and functions . 76
3.7.3 Pointers to structures . 78
3.7.4 Self-referential structures . 79
3.7.5 Runtime allocation of structures . 79
3.7.6 Replacing dynamic allocation by static allocation 81
3.7.7 Unions . 82
3.7.8 Bit-fields . 83

3.8 Input and output . 83
3.8.1 Standard input and output . 83
3.8.2 Case study: formatted output — printf 84
3.8.3 Variable-length argument lists . 85
3.8.4 File access . 85
3.8.5 Error handling . 86
3.8.6 Miscellaneous functions . 86

3.9 Correctness matters . 88
3.10 Memory management . 93

3.10.1 Basic requirements . 93
3.10.2 The storage model . 94
3.10.3 State descriptions . 95
3.10.4 Object copy functions . 96
3.10.5 The seenB4 predicate . 98
3.10.6 Improved sharing of code . 99
3.10.7 Heap-allocated memory . 100

3.11 Code generation . 100

vi

www.manaraa.com

3.11.1 Algebraic reductions . 100
3.11.2 Deciding dynamic tests . 101

3.12 Domain of re-use and sharing . 101
3.12.1 Domain of specialization . 102
3.12.2 Domain of re-use . 102
3.12.3 Live variables and domain of re-use 103

3.13 Specialization, sharing and unfolding . 104
3.13.1 Sharing and specialization . 104
3.13.2 Unfolding strategy . 105

3.14 Imperfect termination . 106
3.15 Related work . 106

3.15.1 Partial evaluation: the beginning 106
3.15.2 Partial evaluation for imperative languages 107
3.15.3 Generating extension generators . 107
3.15.4 Other transformations for imperative languages 108

3.16 Future work and conclusion . 108
3.16.1 Further work . 108
3.16.2 Conclusion . 109

4 Pointer Analysis 111
4.1 Introduction . 112

4.1.1 What makes C harder to analyze? 112
4.1.2 Points-to analysis . 113
4.1.3 Set-based pointer analysis . 114
4.1.4 Overview of the chapter . 114

4.2 Pointer analysis: accuracy and efficiency 115
4.2.1 Flow-insensitive versus flow-sensitive analysis 115
4.2.2 Poor man’s program-point analysis 116
4.2.3 Intra- and inter-procedural analysis 116
4.2.4 Use of inter-procedural information 117
4.2.5 May or must? . 118

4.3 Pointer analysis of C . 118
4.3.1 Structures and unions . 118
4.3.2 Implementation-defined features . 119
4.3.3 Dereferencing unknown pointers . 120
4.3.4 Separate translation units . 120

4.4 Safe pointer abstractions . 121
4.4.1 Abstract locations . 121
4.4.2 Pointer abstraction . 123
4.4.3 Safe pointer abstraction . 124
4.4.4 Pointer analysis specification . 125

4.5 Intra-procedural pointer analysis . 129
4.5.1 Pointer types and constraint systems 129
4.5.2 Constraint generation . 131

vii

www.manaraa.com

4.5.3 Completeness and soundness . 136
4.6 Inter-procedural pointer analysis . 136

4.6.1 Separating function contexts . 137
4.6.2 Context separation via static-call graphs 137
4.6.3 Constraints over variant vectors . 138
4.6.4 Inter-procedural constraint generation 139
4.6.5 Improved naming convention . 140

4.7 Constraint solving . 140
4.7.1 Rewrite rules . 140
4.7.2 Minimal solutions . 142

4.8 Algorithm aspects . 143
4.8.1 Representation . 143
4.8.2 Iterative constraint solving . 143
4.8.3 Correctness . 144
4.8.4 Complexity . 145

4.9 Experiments . 145
4.10 Towards program-point pointer analysis . 146

4.10.1 Program point is sequence point . 146
4.10.2 Program-point constraint-based program analysis 147
4.10.3 Why Heintze’s set-based analysis fails 147

4.11 Related work . 148
4.11.1 Alias analysis . 148
4.11.2 Points-to analysis . 150
4.11.3 Approximation of data structures 151

4.12 Further work and conclusion . 151
4.12.1 Future work . 151
4.12.2 Conclusion . 152

5 Binding-Time Analysis 153
5.1 Introduction . 154

5.1.1 The use of binding times . 154
5.1.2 Efficient binding-time analysis . 155
5.1.3 Related work . 155
5.1.4 The present work . 156
5.1.5 Overview of the chapter . 156

5.2 Separating binding times . 157
5.2.1 Externally defined identifiers . 157
5.2.2 Pure functions . 158
5.2.3 Function specialization . 159
5.2.4 Unions and common initial members 159
5.2.5 Pointers and side-effects . 159
5.2.6 Run-time memory allocation . 159
5.2.7 Implementation-defined behaviour 160
5.2.8 Pointers: casts and arithmetic . 160

viii

www.manaraa.com

5.3 Specifying binding times . 161
5.3.1 Binding-time types . 161
5.3.2 Binding time classifications of objects 163
5.3.3 The lift relation . 163
5.3.4 Divisions and type environment . 164
5.3.5 Two-level binding-time annotation 165
5.3.6 Well-annotated definitions . 165
5.3.7 Well-annotated expressions . 167
5.3.8 Well-annotated statements . 170
5.3.9 Well-annotated functions . 171
5.3.10 Well-annotated C programs . 172

5.4 Binding time inference . 173
5.4.1 Constraints and constraint systems 173
5.4.2 Binding time attributes and annotations 174
5.4.3 Capturing binding times by constraints 175
5.4.4 Normal form . 181
5.4.5 Solving constraints . 182
5.4.6 Doing binding-time analysis . 184
5.4.7 From division to well-annotated program 184
5.4.8 Extensions . 185

5.5 Efficient constraint normalization algorithm 185
5.5.1 Representation . 185
5.5.2 Normalization algorithm . 187
5.5.3 Complexity . 187
5.5.4 Correctness . 188
5.5.5 Further improvements . 188

5.6 Polyvariant binding-time analysis . 188
5.6.1 Polyvariant constraint-based analysis 189
5.6.2 Polyvariance and generation extensions 190

5.7 Examples . 190
5.8 Related work . 191

5.8.1 BTA by abstract interpretation . 191
5.8.2 BTA by type inference and constraint-solving 191
5.8.3 Polyvariant BTA . 192

5.9 Further work . 192
5.9.1 Constraint solving, tracing and error messages 192
5.9.2 The granularity of binding times . 193
5.9.3 Struct variants . 193
5.9.4 Analysis of heap allocated objects 193

5.10 Conclusion . 193

ix

www.manaraa.com

6 Data-Flow Analysis 194
6.1 Introduction . 195

6.1.1 Data-flow analysis framework . 195
6.1.2 Solutions methods . 196
6.1.3 Inter-procedural program analysis 196
6.1.4 Procedure cloning . 197
6.1.5 Taming pointers . 198
6.1.6 Overview of chapter . 198

6.2 Side-effect analysis . 199
6.2.1 May side-effect . 199
6.2.2 Side-effects and conditional side-effects 199
6.2.3 Using side-effect information . 200
6.2.4 Control dependence . 200
6.2.5 Conditional may side-effect analysis 201
6.2.6 Doing side-effect analysis . 204

6.3 Use analysis . 204
6.3.1 Objects in-use . 204
6.3.2 In-use and liveness . 205
6.3.3 Using in-use in generating extensions 206
6.3.4 In-use analysis functions . 206
6.3.5 Doing in-use analysis . 207
6.3.6 An enhancement . 209

6.4 Related work . 209
6.4.1 Side-effect analysis . 209
6.4.2 Live-variable analysis . 210
6.4.3 Procedure cloning and specialization 210

6.5 Conclusion and Future work . 210
6.5.1 Further work . 210
6.5.2 Conclusion . 210

7 Separate Program Analysis and Specialization 211
7.1 Introduction . 212

7.1.1 Partial evaluation and modules . 212
7.1.2 Modules and generating extensions 212
7.1.3 Pragmatics . 213
7.1.4 Analysis in three steps . 214
7.1.5 Separate specialization . 214
7.1.6 Overview of chapter . 214

7.2 The problem with modules . 215
7.2.1 External identifiers . 215
7.2.2 Exported data structures and functions 215
7.2.3 Pure external functions . 216

7.3 Separate binding-time analysis . 216
7.3.1 Constraint-based binding-time analysis revisited 217

x

www.manaraa.com

7.3.2 Inter-modular binding-time information 218
7.3.3 Binding-time signatures . 219
7.3.4 Doing inter-modular binding-time analysis 220
7.3.5 Using binding-times . 222
7.3.6 Correctness of separate analysis . 222

7.4 Incremental binding-time analysis . 223
7.4.1 Why do incremental analysis? . 223
7.4.2 The basic idea . 223
7.4.3 The components of an incremental constraint solver 224
7.4.4 Correctness of incremental binding-time analysis 227
7.4.5 Doing incremental binding-time analysis 228

7.5 Separate specialization . 229
7.5.1 Motivation . 229
7.5.2 Conflicts between global transformations and modules 230
7.5.3 Towards separate specialization . 230
7.5.4 A example: specializing library-functions 231

7.6 Separate and incremental data-flow analysis 231
7.6.1 Separate pointer analysis . 231

7.7 Related work . 232
7.8 Further work and conclusion . 233

7.8.1 Future work . 233
7.8.2 Conclusion . 233

8 Speedup: Theory and Analysis 234
8.1 Introduction . 235

8.1.1 Prospective speedups . 235
8.1.2 Predicting speedups . 236
8.1.3 A reservation . 236
8.1.4 Overview of chapter . 236

8.2 Partial evaluation and linear speedups . 237
8.2.1 Measuring execution times . 237
8.2.2 Linear speedup . 238
8.2.3 Some examples . 238
8.2.4 No super-linear speedup! . 239

8.3 Predicting speedups . 241
8.3.1 Safety of speedup intervals . 242
8.3.2 Simple loops and relative speedup 242
8.3.3 Doing speedup analysis . 243
8.3.4 Experiments . 245
8.3.5 Limitations and improvements . 246
8.3.6 Variations of speedup analysis . 247

8.4 Predicting speedups in generating extensions 248
8.4.1 Accounting for static values . 248
8.4.2 Speedup analysis in generating extensions 248

xi

www.manaraa.com

8.5 Related work . 249
8.5.1 Speedup in partial evaluation . 249
8.5.2 Speedup analysis versus complexity analysis 249
8.5.3 Properties of optimized programs 250

8.6 Future work . 250
8.6.1 Costs of instructions . 250
8.6.2 Estimation of code size . 251
8.6.3 Unsafe optimizations and super-linear speedup 251

8.7 Conclusion . 251

9 Partial Evaluation in Practice 253
9.1 C-Mix: a partial evaluator for C . 254

9.1.1 Overview . 254
9.1.2 C-Mix in practice . 254

9.2 Speed versus size . 254
9.2.1 Data-dependent algorithms . 254
9.2.2 Case study: binary search . 256

9.3 Specialization and optimization . 260
9.3.1 Enabling and disabling optimizations 260
9.3.2 Order of optimization . 261
9.3.3 Some observations . 263

9.4 Experiments . 263
9.4.1 Lexical analysis . 263
9.4.2 Scientific computing . 264
9.4.3 Ray tracing . 264
9.4.4 Ecological modelling . 265

9.5 Conclusion and further work . 266
9.5.1 Future work . 266
9.5.2 Summary . 266

10 Improvements and Driving 267
10.1 Introduction . 268

10.1.1 A catalogue of transformation techniques 268
10.1.2 An example of a genius transformation 269
10.1.3 Overview of chapter . 271

10.2 Case study: generation of a KMP matcher 271
10.2.1 A naive pattern matcher . 271
10.2.2 Positive context propagation . 272
10.2.3 A KMP matcher . 273

10.3 Towards generating super-extensions . 275
10.3.1 Online decisions . 275
10.3.2 Representation of unknown values 275
10.3.3 Theorem proving . 276
10.3.4 Context propagation . 278
10.3.5 Is this driving? . 279

xii

www.manaraa.com

10.4 Related work . 279
10.5 Future work and Conclusion . 280

10.5.1 Further work . 280
10.5.2 Conclusion . 280

11 Conclusion 281
11.1 Future work . 281

11.1.1 Program specialization and transformation 281
11.1.2 Pointer analysis . 282
11.1.3 Binding-time analysis . 282
11.1.4 Data-Flow analysis . 282
11.1.5 Separate analysis . 282
11.1.6 Speedup analysis . 282
11.1.7 Experiments . 283
11.1.8 Driving . 283

11.2 Final remarks . 283

Bibliography 284

Danish Summary 297

xiii

www.manaraa.com

Chapter 1

Introduction

The need for computer software is constantly increasing. As the prices of computers fall,
new areas suitable for automatic data processing emerge. Today’s bottleneck is not pro-
duction and delivery of hardware, but the specification, implementation and debugging of
programs. Tools aiming at automating the software development are needed to surmount
the so-called software crisis. This thesis presents one such promising tool: an automatic
partial evaluator, or program specializer, for the Ansi C programming language. In par-
ticular, we describe a generating extension transformation, and develop several program
analyses to guide the transformation.

1.1 Software engineering

Despite the rapid development in computer technology, software engineering is still a
handicraft for ingenious software engineers. Much effort is put into the development of
prototypes, implementation of deliverables, and debugging of those, but the demand for
programs is likely to exceed the capacity of the current software production. In this
section we sketch the contemporary development of software and some of its deficiencies.
Next we explain how automatic program specialization can reconcile the benefits of general
solutions and efficient specialized programs, enabling fast computer software production
and maintenance.

1.1.1 From specification to deliverable

The development of a computer system usually undertakes several phases:

specification → prototyping → implementation → debugging → deliverable

where some (or all) steps may be iterated.
From an initial specification of the problem, a prototype implementation is created.

The objective is real-testing and requirement study of the system’s potential performances
and features. Often, prototypes are implemented in high-level languages such as Lisp that
offer a rich library of auxiliary functions, and there programmers are less burdened with
implementation of primitive data structures, e.g. lists.

1

www.manaraa.com

When the prototyping stage has completed, the prototype is normally thrown away,
and the system re-implemented in a language where efficiency is of major concern. Cur-
rently, many systems are implemented in the pervasive C programing language due to its
availability on almost all platforms, its efficiency, and its support of low-level operations.

However, a vast amount of work is invested in debugging and run-in of deliverables —
an effort that presumably already has been put in to the implementation of the prototype
version. Due to the more primitive basic operations — consider for example the differences
between list manipulation in Lisp and C — errors not present in the prototype are likely
to creep in, and debugging is an order magnitude harder (and more time consuming).

Ideally, an implementation should be rigorously showed correct before delivered, but in
practice this is an impossible task in the case of continually changing programs. Instead,
the project manager may estimate that “less than 1 % errors remain” and haughtily state
it “correct”.

Obviously, it would be preferable to base final implementations on the prototype sys-
tem instead of having to start from scratch: many errors introduced in the final implemen-
tation have probably been fixed in the prototype version; prototypes are more amenable
for changes and allow code re-use, and prototypes are often more cleanly structured and
hence easier to maintain.

There is, however, one unquestionable reason to why the prototype’s generality is not
kept: efficiency.

1.1.2 The problem of excess generality versus efficiency

An important property of a prototype is the possibility to modify the system to accom-
modate new requirements and specifications. To fulfill this, prototypes are parameterized
over specifications.

For example, in a data base program, the number of lines of output can be given as
a specification parameter instead of being “hard-coded” as a constant into the program
wherever used. If a customer wants to experiment with different amounts of output
before deciding on the right number, this can easily be done. Had the number been
specified several places in the system, insight and work-hours would be needed to change
it.1 Unfortunately, the passing around and testing of specification constants slows down
program execution, and is therefore normally removed in a final implementation.

From the software developer’s point of view, however, it would be desirable to make the
parameterization a permanent part of the system. As all software engineers know, users
all too often reverse their decisions and want the systems to be changed. A significant
part of the money spent on software development is canalized into software maintenance.

With a few exceptions — see below — speed is almost always weighted over generality.
Unacceptably long response times may be the result of superfluous generality, and faster
computers are not the answer: the complexity of problems grows faster, with hitherto
undreamt subjects qualified for parameterization, than the hardware technology.

This is why the use of executable specifications is not dominant in professional software
engineering.

1Admittedly, this is a contrived example, but it illustrates the principles.

2

www.manaraa.com

/* printf: output values according to format */
int printf(char *format, char **values)
{

int n = 0;
for (; *format != ’\0’; format++)

if (*format != ’%’) putc(*format);
else switch (*++format) {

case ’%’: putc(’%’); break;
case ’s’: puts(values[n++]); break;
default : return EOF;

}
return n;

}

Figure 1: Mini-version of the C standard-library function printf()

1.1.3 Executable specifications

A compelling idea is automatic transformation of specifications into efficient, specialized
programs, the objective being faster software development and reduced software main-
taining costs. For this to be possible, the specification must executable in some sense.
In this thesis we are not concerned with transformation of very high level specifications
to low-level code, but the optimization of target code produced by such transformations.
For now, we use Lisp2 as a specification language. We believe that most programmers
will agree that software development in Lisp is more productive and less error-prone than
in e.g. assembly code.

Automatic compilation of Lisp to C, say, does not solve the efficiency problem, though.
Traditional compilation techniques are not strong enough to eliminate excessive generality.
Using today’s methods, the translated program will carry around the specification and
perform testing on it at runtime. Furthermore, automatic transformation of high-level
languages into low-level languages tends to employ very general compilation schemes for
both statements and data structures. For example, instead of using separate, statically
allocated variables, automatically produced programs use heap-allocated objects. Again
we identify excessive generality as the obstacle for efficiency.

In conclusion: even though more efficient than the corresponding Lisp program, the
transformed program may still be an order of magnitude slower than a “hand-made” piece
of software. What is needed is a way of transforming a general program into a specialized
program that eliminates specification testing.

1.1.4 Generality in programs

Excessive generality is not, however, inseparably coupled with automatic program trans-
formation. It is, actually, present in most existing programs. Consider Figure 1 that
depicts a mini-version of the C library function ‘printf()’.

The body of the function contains a loop that traverses through the ‘format’ string.

2Substitute with a favorite programming language: SML, Ada, Haskell,

3

www.manaraa.com

/* printf spec: print ”n=values[0]” */
int printf_spec(char **values)
{

putc(’n’);
putc(’=’);
puts(values[0]);
return 1;

}

Figure 2: Specialized version of ‘printf()’

According to the control codes in the string, different actions are performed. The time
spent on determining what to do, e.g. to output ‘%’, is normally referred to as the inter-
pretation overhead.

The ‘printf()’ function is a general one: it can produce all kinds of output according
to the specification ‘format’. This makes the function a prime candidate for inclusion in
a library, and for code re-use. The excess generality is seldom needed, though.

In a typical program, all calls to ‘printf() are of the form ‘printf("n=%s", v)’,
where the format is a constant string. Thus, the program fully specifies the action of
‘printf()’ at compile-time; the interpretation overhead is wasted. The general call could
profitably be replaced by a call to a specialized version of ‘printf()’, as illustrated in
Figure 2. In the specialized version, the specification has been “coded” into the control
structure. The net effect is that the interpretation overhead has gone away.

The example generalizes easily: a differential equation solver is invoked several times
on the same equation system with different start conditions; a program examining DNA-
strings looks for the same pattern in thousands of samples; a ray-tracer is repeatedly
applied to the same picture but with different view points; a spread-sheet program is
run on the same tax base specification until the taxes change; an interpreter is executed
several times on the same subject program but with different input.

The latter is a restatement of the well-known fact that compilation and running of a
low-level target program are normally faster than interpretation of a high-level program.
The reason is analogous to the other examples: the interpreter performs a great amount of
run-time book-keeping that can be removed by compilation. Thus many existing program
may also benefit form specialization.

More broadly, purely from efficiency criteria, specialization may be advantageous
whenever one or more parameters change more frequently than others. As an example, if
a program contains two calls with the same format string, the interpretation overhead is
executed twice in the general version, and not at all in the specialized version.

On the other hand, only a few programmers actually write a specialized version of
‘printf()’; they use the general version. The reason is obvious: the existing version of
‘printf()’ is known to be correct and the use of it does not introduce bugs, and it is
convenient.

The analogy to software development via general prototypes should be clear. From a
single prototype our wish is to derive several, specialized and efficient implementations.
The prototype can then be included in a library and used repeatedly.

4

www.manaraa.com

©©©©©©©¼

©©©©©©¼

XXXXXXzS
S

S
S

Sw ?
Q

Q
Q

Q
Q

Qs

³³³³³³)

p d

v

int

target

comp

Figure 3: Computation in one or two stages

1.1.5 Computation in stages

Most programs contain computations which can be separated into stages; a notable ex-
ample being interpreters.

An S-interpreter is a program int (in a language L) that takes as input a subject
S-program p and the input d to p, and returns the same result as execution of p applied d
on an S-machine. The notion is made precise in Section 1.2.1 below. An S-to-L compiler
comp is a program that as input takes p and yields a target program p′ in the L language.
When run, the target program gives the same result as p applied to d on an S machine.

The two ways of execution a program is illustrated in Figure 3. To the left, the result
v is produced in one step; to the right, two stages are used.

The computations carried out by a compiler are called compile-time, the other run-
time. The interpreter mixes the times: during a run, the interpreter both performs
compile-time computations (e.g. syntax analysis) and run-time calculations (e.g. multi-
plication of integers). In the ‘printf()’ function, the compile-time computations include
the scanning of the ‘format’ string while the calls to ‘putc()’ and ‘puts()’ constitute the
run-time part. Separation of the stages enables a performance gain.

Why are we then interested in interpreters, or more broadly, general programs, when
generality often causes a loss in performance? The are a number of persuading arguments:

• General programs are often easier to write than specialized programs.3

• General programs support code re-use. Programs do not have not to be modified
every time the contexts change, only the input specification.

• General programs are often uniform in structure, and hence more manageable to
maintain and show correct. Furthermore, only one program has to be maintained
as opposed to several dedicated (specialized) versions.

These have been well-known facts in the computer science for many years, and in one
area, syntax analysis, generality and efficiency have successfully been reconciled.

3One reason is that programmers can ignore efficiency aspects whereas efficiency is a major concern
when writing a specialized program for a particular task.

5

www.manaraa.com

Implementation of a parser on the basis of a specification, e.g. a BNF-grammar, is a
tedious, time-consuming and trivial job. An alternative is to employ a general parser, for
example Earley’s algorithm, that takes as input both a grammar and a stream of tokens.
However, as witnessed by practical experiments, this yields excessively slow parsers for
commercial software. In order to produce efficient parsers from BNF specifications, parser
generators such as Yacc have been developed. Yacc produced parsers are easy to generate,
and they are known to adhere to the specification.

A much admired generalization has been around for years: compiler generators, that
convert language specifications into compilers. A fruitful way of specifying a language
is by the means of an operational semantics. When put into a machine-readable form,
an operational semantics is an interpreter. The present thesis also contributes in this
direction.

Our approach goes beyond that of Yacc, however. Where Yacc is dedicated to the
problem of parser generation, our goal is automatic generation of program generators.
For example, given Earley’s algorithm, to generate a parser generator, and when given an
interpreter, to generate a compiler.

1.1.6 Specialization applied to software development

Today’s professional software development is to a large extent dominated by the software
engineers. To solve a given problem, a specific program is constructed — often from
scratch. Even though the products of software companies have undergone a revolution,
only little progress in the actual software development has happened.

Consider for example the area of data base programs. Years ago, a specialized data
base for each application would have been developed by hand. Now, a general data base
program is customized to handle several different purposes. Without these highly general
data base programs, the technology would not exhibit the worldwide use, as is the case
today. The extra generality has been made acceptably due to larger computers,4 but,
some problems require fast implementations which rule out excess generality.

This principle can be extended to the software engineering process itself. We imagine
that future software engineering will be based on highly parameterized general programs,
that automatically are turned into efficient implementations by the means of program
specialization. This gives the best of the two worlds:

• Only one general program has to be maintained and shown correct.

• A new specialized program complying to changed specifications can be constructed
automatically. The correctness comes for free.

• Code re-use is urged; by simply changing the parameters of the general program,
many unrelated problems may be solvable by the same program.

• The programmer can be less concerned with efficiency matters.

This thesis develops such a software tool: an automatic program specializer for the C
programming language.

4and that many small companies prefer a slow (and cheap) data base than no data base at all.

6

www.manaraa.com

1.2 Program specialization and partial evaluation

In order to conduct analysis and transformation of a program, a clear specification of a
program’s semantics is needed. In this section we define the extensional meaning of a
program run. For the aim of analysis and transformation, this is normally insufficient;
an intensional specification, assigning meaning to the various language constructs, is
required.

1.2.1 Programs, semantics and representations

To simplify the presentation we regard (for now) a program’s meaning to be an input-
output function. If p is a program in some programming language C over data domain V ,
[[p]]C : V ∗ → V⊥ denotes its meaning function. Since programs may fail to terminate, the
lifted domain V⊥ is used. In the case of the C programming language, [[·]] is a complying
implementation of the Standard [ISO 1990]. For a program p and input d we write
[[p]]C(d) ⇒ v if execution of p on d yields value v. For example, if a is an array containing
the string ‘"Hello"’, [[printf]]C("n=%s", a) ⇒ "n=Hello" (where we consider the function
to be a program).

An S-interpreter is a C program int that takes as input a representation of an S
program and a representation of its input d, and yields the same result as the meaning
function specifies:

[[int]](ppgm, d
val

) ⇒ vval iff [[p]]S(d) ⇒ v

where d
val

denotes the representation of an S-input in a suitable data structure, and
similarly for ppgm.

A compiler comp can be specified as follows:

[[comp]]C(ppgm) ⇒ target
pgm

, [[target]]C(d) ⇒ v iff [[p]]S(d) ⇒ v

for all programs p and input d.
The equation specifies that the compiler must adhere to the language’s standard, e.g.

a C compiler shall produce target programs that complies to the Standard [ISO 1990].
Admittedly, this can be hard to achieve in the case of languages with an involved dynamic
semantics. This is why a compiler sometimes is taken to be the standard, e.g. as in “the
program is Ansi C in the sense that ‘gcc -ansi -Wall’ gives no warnings or errors”.5

1.2.2 The Futamura projections

Let p be a C program and s, d inputs to it. A residual version ps of p with respect to s
is a program such that [[ps]]C(d) ⇒ v iff [[p]]C(s, d) ⇒ v.

The program ps is a residual, or specialized version of p with respect to the known
input s. The input d is called the unknown input.

A partial evaluator ‘mix’ is a program that specializes programs to known input. This
is captured in the Mix equation [Jones et al. 1989,Jones et al. 1993].

5Stolen from an announcement of a parser generator that was claimed to produce ‘strict Ansi C’.

7

www.manaraa.com

Definition 1.1 Let p be a C program and s, d input to it. A partial evaluator mix fulfills

[[mix]]C(ppgm, sval) ⇒ ps
pgm s.t. [[ps]]C(d) ⇒ v

whenever [[p]]C(s, d) ⇒ v. 2

Obviously, ‘mix’ must operate with the notions of compile-time and run-time. Constructs
that solely depend on known input are called static; constructs that may depend on
unknown input are called dynamic. The classification of constructs into static or dynamic
can either be done before the actual specialization (by a binding-time analysis) or during
specialization. In the former case the system is called off-line; otherwise it is on-line. We
only consider off-line specialization in this thesis, for reason that will become apparent.6

Suppose that ‘Cmix’ is a partial evaluator for the C language. Then we have:

[[Cmix]](printf
pgm

, "n=%s"
val

) ⇒ printf spec
pgm

where the program ‘printf spec()’ was listed in the previous section.
A remark: for practical purposes we will weaken the definition and allow ‘mix’ to

loop. In the following we implicitly assume that ‘mix’ terminates (often enough) — not
a problem in practice.

If the partial evaluator ‘mix’ is written in the same language as it accepts, it is possible
to self-apply it. The effect of this is stated in the Futamura projections [Jones et al. 1993].

Theorem 1.1 Let int be an S-interpreter and ‘p’ an S program. Then holds:

[[mix]]C(int
pgm

, pval) ⇒ target
pgm

[[mix]]C(mix
pgm

, int
pgmval

) ⇒ comppgm

[[mix]]C(mix
pgm

, mix
pgmval

) ⇒ cogenpgm

where comp is a compiler, and cogen a compiler generator.

The projections are straightforward to verify via the Mix equation, and the definitions of
target programs and compilers.

The compiler generator ‘cogen’ is a program that, given an interpreter, yields a com-
piler:

[[cogen]]C(int
pgmval

) ⇒ comppgm,

cf. the Mix equation and the second Futamura projection. Suppose that we apply ‘cogen’
to the “interpreter” ‘printf()’:

[[cogen]]C(printf
pgmval

) ⇒ printf gen
pgm

where the “result” function is called ‘printf gen()’. When run on the static input
"n=%s", the extension will generate a specialized program ‘printf spec()’.

6This statement is not completely true. We will also investigate a ‘mix-line’ strategy where some
decisions are taken during specialization.

8

www.manaraa.com

1.2.3 Generating extensions

A generating extension is a program generator: when executed it produces a program.

Definition 1.2 Let p be a program and s, d input to it. A generating extension p-gen of
p yields a program ps when executed on s,

[[p-gen]]C(s) ⇒ ps
pgm

such that ps is a specialized version of p with respect to s. 2

A generating-extension generator is a program that transforms programs into gener-
ating extensions.

Definition 1.3 A generating extension generator ‘gegen’ is a program such that for a
program p:

[[gegen]]C(ppgm) ⇒ p-genpgm

where p-gen is a generating extension of p. 2

The compiler generator ‘cogen’ produced by double self-application of ‘mix’ is also a
generating-extension generator. However, notice the difference in signature:

[[cogen]]C(ppgmval
) ⇒ p-genpgm

Where ‘gegen’ operates on a (representation of a) program, ‘cogen’ inputs a “val”-
encoding of the program. The reason is that ‘cogen’ inherits the representation employed
by the ‘mix’ from which it was generated.

1.3 Program analysis

A program transformation must be meaning preserving such that the optimized program
computes the same result as the original program. Transformations based on purely syn-
tactical criteria are often too limited in practice; information about construct’s behaviour
and result are needed.

The aim of program analysis is to gather dynamic properties about programs before
they actually are run on the computer. Typical properties of interest include: which
objects may a pointer point to? (pointer analysis, Chapter 4); is the variable ‘x’ bound
at compile-time or run-time? (binding-time analysis, Chapter 5); how much efficiency is
gained by specializing this program? (speedup analysis, Chapter 8); and is this variable
used in this function? (in-use analysis, Chapter 6).

The information revealed by a program analysis can be employed to guide transfor-
mations and optimizations. A compiler may use live-variable information to decide ether
to preserve a value in a register; a partial evaluator may use binding-time information to
decide whether to evaluate or reduce an expression, and the output of an analysis may
even be employed by other program analyses. For example, in languages with pointers,
approximation of pointer usage is critical for other analyses. Lack of pointer information
necessitates worst-case assumptions which are likely to degrade the accuracy to trivia.

9

www.manaraa.com

1.3.1 Approximation and safety

A program analysis is normally applied before program input is available, and this ob-
viously renders the analysis undecidable. In complexity theory, this is known as Rice’s
Theorem: all but trivial properties about a program are undecidable. In practice we
desire the analysis to compute information valid for all possible inputs.

This means, for example, that both branches of an if statement must be taken into
account. In classical data-flow analysis this is known as the control-flow assumption: all
control-paths in the program are executable. Of course, a “clever” analysis may recognize
that the then-branch in the following program fragment is never executed,

if (0) x = 2; else x = 4;

but this only improves the analysis’ precision on some programs — not in general.
Even under the control-flow assumption some properties may be undecidable; one

such example is alias analysis in the presence of multi-level pointers, see Chapter 4.
This implies that an analysis inevitably must approximate. Sometimes it fails to detect
a certain property, but it must always output a safe answer. The notion of safety is
intimately connected with both the aim of the analysis, and the consumer of the inferred
information. For example, in the case of live-variable analysis, if is safe to classify as live
all variables the pointer ‘p’ may refer to in an assignment ‘*p = 2’. However, in the case
of a constant propagation analysis, it would be erroneous to regard the same objects as
constant.7

When it has been decided which properties an analysis is supposed to approximate, it
must (ideally) be proved correct with respect to the language’s semantics.

1.3.2 Type-based analysis specifications

A semantics is normally solely concerned with a program’s input-output behavior. As
opposed to this, program analysis typically collects informations about a program’s in-
terior computation. An example: the set of abstract locations a pointer may assume.
This necessitates an instrumented semantics that collects the desired information as well
as characterizes the input-output function. For example, an instrumented, or collecting
semantics may accumulate all the values a variable can get bound to. An analysis can
then be seen as a decidable abstraction of the instrumented semantics.

In this thesis we specify analyses as non-standard type systems on the basis of an oper-
ational semantics for C. Many properties of programs can be seen as types of expressions
(or statements, functions etc.). Consider for example constant propagation analysis. The
aim of this analysis is to determine whether variables possess a constant value. This is
precisely the case if the part of the store S representing a variable has a constant value.8

The (dynamic) operational semantics for a small language of constants, variables and
binary plus can be given as inference rules as follows

7In the latter case ‘must point to’ information is needed.
8For simplicity we only find variables that have the same constant values throughout the whole

program.

10

www.manaraa.com

` 〈c, S〉 ⇒ 〈c, S〉 ` 〈v, S〉 ⇒ 〈S(v), S〉
` 〈e1, S〉 ⇒ 〈v1, S1〉
` 〈e2, S1〉 ⇒ 〈v2, S2〉
` 〈e1 + e2, S〉 ⇒ 〈v1 + v2, S2〉

where S is a store. A constant evaluates to itself; the value of a variable is determined by
the store, and the value of a binary plus is the sum of the subexpressions.

To perform constant propagation analysis, we abstract the value domain and use the
domain ⊥ < n < > where ⊥ denotes “not used”, n ∈ IN means “constant value n”, and
> denotes “non-constant”.

`
〈
c, S̃

〉
⇒

〈
c, S̃

〉
`

〈
v, S̃

〉
⇒

〈
S̃(v), S̃

〉 `
〈
e1, S̃

〉
⇒

〈
v1, S̃1

〉

`
〈
e2, S̃1

〉
⇒

〈
v2, S̃2

〉

`
〈
e1 + e2, S̃

〉
⇒

〈
v1+̃v2, S̃2

〉

where the operator +̃ is defined by m+̃n = m + n, m+̃> = >, >+̃n = > (and so on).
The analysis can now be specified as follows. Given a fixed constant propagation map

S̃ (with the interpretation that S̃(v) = n when v is constant n), the map is safe if it
fulfills the rules

S̃ ` c : c S̃ ` v : S̃(v)

S̃ ` e1 : v1

S̃ ` e2 : v2

S̃ ` e1 + e2 : v1+̃v2

for an expression e. We consider the property “being constant” as a type, and have defined
the operator +̃ (as before) on types.

As apparant from this example, the type-based view of program analysis admits easy
comparison of the language’s dynamic semantics with the specifications, to check safety
and correctness.

1.3.3 Program analysis techniques

Program analysis techniques can roughly be grouped as follows.

• Classical data-flow analysis, including iterative [Hecht and Ullman 1975] and elim-
ination or interval [Ryder and Paull 1986] methods. See Marlow and Ryder for a
survey [Marlowe and Ryder 1990b].

• Abstract interpretation, including forward [Cousot and Cousot 1977] and backward
[Hughes 1998] analysis. See Jones and Nielson for a survey [Jones and Nielson 1994].

• Non-standard type inference, including “algorithm W” methods [Gomard 1990], and
constraint-based techniques [Henglein 1991,Heintze 1992].

Classical data-flow analyses are based on data-flow equation solving. Iterative methods
find a solution by propagation of approximative solutions until a fixed-point is reached.
Interval methods reduce the equation system such that a solution can directly be com-
puted. The data-flow equations are typically collected by a syntax-directed traversal

11

www.manaraa.com

over the program’s syntax tree. For example, in live-variable analysis [Aho et al. 1986],
gen/kill equations are produced for each assignments.

Classical data-flow analysis is often criticized for being ad-hoc and not semantically
based. In the author’s opinion this is simply because most classical data-flow analyses
were formulated before the framework of both denotational and operational semantics
were founded. Moreover, many classical data-flow analyses are aimed at languages such
as Fortran with a rather obvious semantics, e.g. there are no pointers. Finally, it is often
overlooked that large part of the literature is concerned with algorithmic aspects contrary
to the literature on abstract interpretation, which is mainly concerned with specification.

Abstract interpretation is usually formulated in a denotational semantics style, and
hence less suitable for imperative languages. A “recipe” can be described as follows: first,
the standard semantics is instrumented to compute the desired information. Next the
semantics is abstracted into a decidable but approximate semantics. The result is an
executable specification.

In practice, abstract interpretations are often implemented by simple, naive fixed-
point techniques, but clever algorithms have been developed. It is, however, common
belief that abstract interpretation is too slow for many realistic languages. On reason
is that the analyses traverse the program several times to compute a fixed-point. Ways
to reduce the runtime of “naive” abstract interpretations have been proposed, borrowing
techniques from classical data-flow analysis, e.g. efficient fixed-point algorithms.

An expression’s type is an abstraction of the set of values it may evaluate to. As we
have seen, many data-flow problems can been characterized as properties of expressions,
and specified by the means of non-standard type systems. The non-standard types can
then be inferred using standard techniques, or more efficient methods, e.g. constraint
solving. Hence, a non-standard type-based analysis consists of two separated parts: a
specification, and an implementation. This eases correctness matters since the specifica-
tion is not concerned with efficiency. On the other hand, the type-based specification
often gives a uniform formulation of the computational problem, and allows efficient al-
gorithms to be developed. For example, the “point-to” problem solved in Chapter 4 is
reduced into solving a system of inclusion constraints.

In this thesis the type-based analyses are dominating, and in particular constraint-
based analyses. This gives a surprisingly simple framework. Furthermore, the relation
between specification and implementation is clearly separated, as opposed to most classi-
cally formulated data-flow problems.

We shall also, however, consider some data-flow problems which we formulate in the
framework of classical monotone data-flow analysis, but on a firm semantical foundation.
As a side-effect we observe that classical data-flow analyses and constraint-based analyses
have many similarities.

1.4 Contributions

This thesis continues the work on automatic analysis and specialization of realistic im-
perative languages, and in particular C. A main result is C-Mix, an automatic partial
evaluator for the Ansi C programming language.

12

www.manaraa.com

1.4.1 Overview of C-Mix

C-Mix is a partial evaluator for the Ansi C programming language. Its phases are
illustrated in Figure 4.9

First, the subject program is parsed and an intermediate representation built. During
this, type checking and annotation is carried out, and a call-graph table is built.

Next, the program is analyzed. A pointer analysis approximates the usage of pointers;
a side-effect analysis employs the pointer information to detect possible side-effects; an
in-use analysis aims at finding “useless” variables; a binding-time analysis computes the
binding time of expressions; and a speedup analysis estimates the prospective speedup.

The generating extension generator transforms the binding-time annotated program
into a generating extension. The generating extension is linked with a library that imple-
ments common routines to yield an executable.

The chapters of this thesis describe the phases in detail.

1.4.2 Main results

This thesis contributes with the following results.

• We develop and describe the transformation of a binding-time analyzed Ansi C pro-
gram into its generating extension, including methods for specialization of programs
featuring pointers, dynamic memory allocation, structs and function pointers.

• We develop an inter-procedural pointer analysis based on constraint solving.

• We develop a constraint-based binding-time analysis that runs in almost-linear time.

• We develop a side-effect and an in-use analysis, formulated as classical monotone
data-flow problems.

• We investigate the potential speedup obtainably via partial evaluation, and devise
an analysis to estimate the speedup obtainable from specialization.

• We develop a separate and incremental binding-time analysis, and describe separate
program specialization. Moreover, we consider separate analysis more broadly.

• We study stronger transformations and specialization techniques than partial eval-
uation, the foremost being driving.

• We provide experimental result that demonstrates the usefulness of C-Mix.

An implementation of the transformations and analyses supports the thesis.

9It should be noted that at the time of writing we have not implemented or integrated all the analyses
listed in the figure. See Chapter 9.

13

www.manaraa.com

?

?

?

?

-

generating extension generator

Transformation

binding-time analysis

speedup analysis

in-use analysis

side-effect analysis

pointer analysis

Analysis

transformation

call-graph analysis

type checking and annotation

Parse

p

p-gen C-Mix lib

C-Mix

Generating extension

Program

feedback

Figure 4: Overview of C-Mix

1.4.3 How this work differs from other work

The results reported in this thesis differ in several respects from other work. Three
underlying design decisions have been: efficiency, reality, and usability. Consider each in
turn.

Efficiency. The literature contains many examples on program analyses that need
nights to analyze a 10 line program. In our opinion such analyses are nearly useless

14

www.manaraa.com

in practice.10 From a practical point of view, it is unacceptable if e.g. a pointer anal-
ysis needs an hour to analyze a 1,000 line program. This implies that we are as much
concerned about efficiency as accuracy. If extra precision is not likely to pay-off, we are
inclined to choose efficiency. Furthermore, we are concerned with storage usage. Many
analyses simply generate too much information to be feasible in practice.

Reality. A main purpose with this work is to demonstrate that semantically-based
analysis and transformation of realistic languages is possible, and to transfer academic
results to a realistic context. This implies that we are unwilling to give up analysis of, for
instance, function pointers and casts, even though it would simplify matters, and allow
more precise approximations in other cases. Moreover, we do not consider a small “toy-
language” and claim that the results scale up. In our experience, “syntactic sugaring” is
not always just a matter of syntax; it may be of importance whether complex expressions
are allowed or not. One example, in partial evaluation feedback to the user is desirable.
However, feedback in the form of some incomprehensible intermediate language is of little
help.

Usability. Much information can be — and has been — inferred about programs. How-
ever, if the information makes little difference for the transformations carried out or the
optimizations made possible, it is good for nothing. In the author’s opinion it is important
that program analyses and transformations are tested on realistic programs. This implies
that if we see that an accurate analysis will be no better than a coarse but fast analysis,
we trade efficiency for precision.

1.4.4 Why C?

It can be argued, and we will see, that C is not the most suitable language for auto-
matic analysis and transformation. It has an open-ended semantics, supports machine-
dependent features that conflicts with semantic-preserving transformation, and is to some
extent unhandy.

On the other hand, C is one of the most pervasively used languages, and there are
many C programs in the computer community that are likely to be around for years. Even
though other languages in the long term are likely to replace C, we suspect this is going
to take a while. Commercial software companies are certainly not willing to give up on
C simply because the lambda calculus is easier to analyze.

Next, even though efficient compilers for C exist, many of these use “old” technology.
One example, the Gnu C compiler does not perform any inter-procedural analysis. In this
thesis we consider separate analysis and describe practical ways to realize truly separate
inter-procedural analysis.

Finally, recently C has become a popular target language for high-level language com-
pilers. Hence, there are good reasons for continued research on analysis and optimization
of C programs.

10A reservation: if an analysis can infer very strong information about a program, it may be worthwhile.

15

www.manaraa.com

1.5 Overview of thesis

The remainder of this thesis is organized as follows.
The first two chapters concern transformation of programs into their generating ex-

tension. In Chapter 3 we develop a generating extension transformation for the Ansi C
language. We describe specialization of the various language constructs, and the sup-
porting transformations. Moreover, we briefly describe a generating extension library
implementing routines used in all extensions.

Chapter 4 develops an inter-procedural constraint-based “point-to” analysis for C.
For every object of pointer type, it approximates the set of abstract locations the object
may contain. The analysis is used by analyses to avoid worst-case assumptions due to
assignments via pointers.

In Chapter 5 an efficient constraint-based binding-time analysis is developed. The
analysis runs in almost linear time, and is fast in practice. An extension yields a poly-
variant binding time classification.

Chapter 6 contains two analyses. A side-effect analysis identifies conditional and un-
conditional side-effects. Conditional side-effects is found via a control-dependence anal-
ysis. The in-use analysis computes an approximation of the objects used by a function.
Both analyses are formulated as monotone data-flow problems.

Chapter 8 considers speedup in partial evaluation from a theoretical and analytical
point of view. We prove that partial evaluation at most can give linear speedup, and
develop a simple speedup analysis to estimate the prospective relative speedup.

Separate and incremental analysis is the subject of Chapter 7. All but trivial programs
are separated into modules which render inter-procedural analysis hard. We develop in
detail a separate constraint-based binding-time analysis. Next, we describe an incremental
constraint solver that accommodates incremental binding-time analysis.

Chapter 9 provides several experimental result produces by C-Mix, and assesses the
utility of the system.

In Chapter 10 we consider stronger transformations more broadly and in particular
driving. Some initial steps towards automation of driving for C is taken.

Chapter 11 holds the conclusion and describes several areas for future work. Ap-
pendix 11.2 contains a Danish summary.

16

www.manaraa.com

Chapter 2

The C Programming Language

The C programming language is pervasive in both computer science and commercial
software engineering. The language was designed in the seventies and originates from
the Unix operating system environment, but exists now on almost all platforms. It is
an efficient, imperative language developed for the programmer; an underlying design
decision was that if the programmer knows what he is doing, the language must not
prevent him from accomplishing it. The International Standard Organization published
in 1988 the ISO Standard which also was adopted by the Ansi standard; from now on
Ansi C.

C supports recursive functions, multi-level pointers, multi-dimensional arrays, user-
defined structures and unions, an address operator, run-time memory allocation, and
function pointers. Further, macro substitution and separate compilation are integrated
parts of the language. It has a small but flexible set of statements, and a rich variety of
operators.

Both low and high-level applications can be programmed in C. User-defined structures
enable convenient data abstraction, and by the means of bit-fields, a port of a device can
be matched. Low-level manipulation of pointers and bytes allows efficient implementation
of data structures, and machine-dependent features enable the development of operating
systems and other architecture-close applications. This renders program analysis and op-
timization hard, but is a major reason for the language’s success. Recently, C has become
a popular target language for high-level language compilers, so efficient and automatic
optimization of C continues to have importance.

We describe the abstract syntax of C and some additional static semantic rules that
assures a uniform representation. Next, we specify the dynamic semantics by means of a
structural operational semantics that comply to the Standard.

In high-level transformation systems, comprehensible feedback is desirable. We de-
scribe a representation of programs that accommodates feedback, and is suitable for au-
tomatic program analysis and transformation. In particular, we consider separation of
struct and union definitions convenient when doing type-based analysis. Furthermore, we
define and give an algorithm for computing a program’s static-call graph. The static-call
graph approximates the invocation of functions at run-time, and is used by context-
sensitive program analyses.

17

www.manaraa.com

2.1 Introduction

The C programming language was designed for and implemented in the Unix operating
system by Dennis Ritchie in the seventies. It is an efficient imperative language offering
features such as recursive functions, multi-level pointers, run-time memory allocation,
user defined types, function pointers, and a small, but flexible, set of statements. A
preprocessor is responsible for macro substitution, and separate compilation is integrated.

Currently, C is one of the most perceived and used languages in software engineering,
and it exists on nearly all platforms. All signs seem to indicated that C will continue to
be dominant in future professional software engineering for many years. The language is
ancestor to the increasingly popular object-oriented C++ language.

2.1.1 Design motivations

Trenchant reasons for the language’s success is that it is terse, powerful, flexible and
efficient. For example, there are no I/O-functions such as ‘read’ and ‘write’ built into
the language. Communication with the environment is provided via a set of standard
library functions. Thus, C actually consists of two parts: a kernel language and a standard
library. The library defines functions for standard input and output (e.g. ‘printf()’);
mathematical functions (e.g. ‘pow()’), string manipulations (e.g. ‘strcmp()’), and other
useful operations. Externally defined functions are declared in the standard header files.
In the following we use “the C language” and “the kernel language” interchangeably unless
otherwise explicitly specified.

Even though the language originally was designed for operating system implementa-
tion, its convenient data abstraction mechanism enables writing of both low and high-level
applications. Data abstraction is supported by user-defined types. By the means of bit-
fields, members of structs can be laid out to match the addresses and bits of e.g. hardware
ports. Several low-level operations such as bit shifts, logical ‘and’ and other convenient
operations are part of the language. Further, casts of pointers to “void pointers” allows
writing of generic functions.

The spirit of the language is concisely captured in the motivations behind the Standard,
as stated in the “Rationale for the Ansi — programming language C” [Commitee 1993]:

• Trust the programmer.

• Don’t prevent the programmer from doing what needs to be done.

• Keep the language small and simple.

• Provide only one way to do an operation.

• Make it fast, even if it is not guaranteed to be portable.

An example: C is not strongly-typed; integers can be converted to pointers, opening up
for illegal references. Years of experience have, however, demonstrated the usefulness of
this so it was not abandoned by the Standard. Instead the Standard specifies that such

18

www.manaraa.com

conversions must be made explicit. When the programmer knows what he or she is doing
it shall be allowed.

The C language has some deficiencies, mostly due of the lack of strong-typing to
prevent type errors at run time [Pohl and Edelson 1988].

2.1.2 Conforming and strictly-conforming programs

A substantial milestone in the language’s history was 1988 where the International Stan-
dard Organization ISO published the ISO C Standard document [ISO 1990,Schildt 1993].
The Standard was modeled after the reference manual published by “the C programming
language” [Kernighan and Ritchie 1988], and tried to preserve the spirit of the language.
The Standard was also adopted by the American standard Ansi.

A program can comply the Standard in two ways: it can be conforming or strictly
conforming. A strictly conforming program shall only use features described in the
Standard, and may not produce any result that depends on undefined, unspecified or
implementation-defined behavior. A conforming program may rely on implementation-
defined features made available by a conforming implementation.

Example 2.1 Suppose that ‘struct S’ is a structure, and consider the code below.

extern void *malloc(size_t);
struct S *p = (struct S *)malloc(sizeof(struct S));

This code is conforming, but not strictly conforming: a “struct S” pointer has stricter
alignment requirement than a “void” pointer, and the sizeof operator is implementation-
defined. End of Example

The intension is that strictly conforming programs are independent from any archi-
tectural details, and henceforth highly portable. On the other hand, implementation of
for instance operating systems and compilers do require implementation-dependent oper-
ations, and this was therefore made part of the Standard.

Example 2.2 The result of a cast of a pointer to an integral value or vice versa is
implementation defined. A cast of a pointer to a pointer with less alignment requirement,
e.g. a “void” pointer, is strictly conforming. The evaluation order of function arguments is
unspecified. Hence, neither a strictly nor a conforming program may rely on a particular
evaluation order. End of Example

In this thesis we are only concerned with implementation- and architecture transparent
analysis and transformation. Thus, program analyses shall not take peculiarities of an
implementation into account, and transformations shall not perform optimization of non-
strictly conforming constructs, e.g. replace ‘sizeof(int)’ by 4. Restriction to strictly
conforming programs is too limited for realistic purposes. Since all but trivial programs
are separated into modules, we shall furthermore not restrict our attention to monolithic
programs.

In general, no non-strictly conforming parts of a program shall be optimized, but will
be suspended to run-time. Moreover, analyses shall not be instrumented with respect to
a particular implementation.

19

www.manaraa.com

2.1.3 User feedback

Program specialization by partial evaluation is a fully-automated high-level program opti-
mization technique, that in principle requires no user guidance nor inspections. However,
program specialization is also an ambitious software engineering process with goals that
go far beyond traditional program optimization. Sometimes these goals are not met, and
the user (may) want to know what went wrong.

The situation is similar to type checking. When a program type checks, a compiler
needs not output any information. However, in the case of type errors, some informative
error messages which ideally indicate the reason toe the error are desirable. Possible
feedback includes:

• Output that clearly shows where it is feasible to apply specialization, e.g. binding-
time annotations and profile informations.

• Information that describes likely gains; i.e. prospective speedups and estimates of
residual program size.

• General feedback about the program’s dynamic properties, e.g. side-effects, call
information and the like.

• The source of dynamic (suspended) computations.

Naturally, the information must be connected to the subject program. Feedback in the
form of intermediate, machine constructed representations is less useful. This renders
probably “three address code” [Aho et al. 1986] useless for user feedback.

2.1.4 Program representation

Most previous work has used intermediate program representations where complex con-
structs are transformed into simpler ones. For example, an assignment ‘s->x = 2’ is
simplified to the statements ‘t = *s; t.x = 2’. This is not an option when program
related feedback must be possible. Furthermore, unrestrained transformation may be se-
mantically wrong. For example, “simplification” of ‘a && b’ into ‘(a != 0) * (b != 0)’
eliminates a sequence point and demands evaluation of ‘b’.

In this thesis we use a program representation closely resembling the structure of the
subject program. The advantages include:

• Transformation into a simpler intermediate form, e.g. static single assignment form,
tends to increase the size of the subject program. We avoid this.

• User feedback can be given concisely; essentially, the user sees nothing but the
subject program.

• Simplification of constructs may throw away information. For example, it may be
useful information that ‘a’ in ‘a[2]’ points to an array, which is not apparent from
the equivalent ‘*(a + 2)’.

20

www.manaraa.com

Some disadvantages are less control-flow information, and more cases to consider.
In the C-Mix system, the user receives graphical feedback in the form of annotated

programs. For instance, the binding time separation of a program is illustrated by dynamic
constructs in bold face.

2.1.5 Notation and terminology

In this thesis we use the notation and terminology as defined by the Standard, and,
secondly, used in the C community.

A variable declaration that actually allocates some storage is called a definition. A
declaration that simply brings a name into scope is called a declaration. For example,
‘int x’ is a definition, and ‘extern int x’ is a declaration. Since we are going to use the
term “dynamic” for “possibly unknown”, we use the term “run-time memory allocation”
as opposed to “dynamic memory allocation”.

A program (usually) consists of several translation units.1 A program is one or more
translation units where one of them contains a ‘main()’ function. Identifiers defined in
modules other than the one being considered are external. Whether a function or variable
is external depends solely on the existence of a definition in the file. If a definition exists,
the function or variable is non-external.

2.1.6 Overview of the chapter

The chapter is structured as follows. In Section 2.2 we describe an abstract syntax for C.
Section 2.3 is concerned with representation of programs and defines static-call graphs.
Section 2.4 provides an operational semantics for abstract C. Section 2.5 mentions related
work, and Section 2.6 concludes.

2.2 The syntax and static semantics of C

This section presents an abstract syntax for C. The abstract syntax is deliberately formed
to resemble concrete C, but does contain some simplifications. For example, all type
definitions must appear at the top of a translation unit; variable and function definitions
cannot be mixed; and initializers cannot be provided as a part of a definition.

2.2.1 Syntax

The abstract syntax of C is given in the Figures 5 and 6. The former defines the syntax of
type definitions, global variable and function definitions, and the latter defines statements
and expressions.

A translation unit consists of three parts. First come type definitions, followed by
declaration and definition of global variables and external functions, and lastly come
function definitions.

1A translation unit roughly corresponds to a file.

21

www.manaraa.com

const ∈ Constants Constants
id ∈ Id Identifiers
label ∈ Label Labels
op ∈ Op Operators

translation-unit ::= type-def∗ decl∗ fun-def∗ Module

type-def ::= struct id { strct-decl+ } Type definition
| union id { strct-decl+ }
| enum id { enum∗ }

strct-decl ::= decl | decl : exp Struct declarator
enum ::= id | id = exp Enumerator declarator

decl ::= storage-spec∗ id type-spec Declaration
storage-spec ::= extern | register Storage specifier

type-spec ::= void | char | int | double | . . . base type
| struct id | union id Struct type
| enum id Enum type
| * type-spec Pointer type
| [const] type-spec Array type
| (declaration∗) type-spec Function type

fun-def ::= type-spec id(declaration∗) body Function definition
body ::= { decl∗ stmt∗ } Function body

Figure 5: Abstract syntax of C (part 1)

A type definition can introduce a struct, a union or an enumeration type. Type
names introduced by the means of ‘typedef’ are syntax and henceforth not present in
the abstract syntax. Similar remarks apply to forward declarations. The abstract syntax
supports bit-fields, and enumeration constants can be given specific values. Since enu-
meration constants to a large extent act as constants we often regard these as “named
constants”.2 Struct and union definitions are not nested.

A declaration has three parts: a list of storage specifiers, an identifier, and a list of
type specifiers. For our purposes the storage specifier ‘extern’ suffices. Other specifiers
such as ‘auto’, ‘static’, or ‘register’ are not used in this thesis, but can be added if
convenient.3

A type specifier is a list of specifiers ending with a base, struct4 or enumeration speci-
fier. A type specifier shall be read left to right. To readability, we surround type specifiers
by brackets, e.g. we write the concrete type ‘int *’ as 〈∗〉 〈int〉.

Example 2.3 The following examples show the connection between some concrete C
declarations and the corresponding abstract syntax notations.

2The revision of the Standard is likely to eliminate the implicit type coercion between enumerators
and integers, thus requiring strong typing of enumeration types.

3Of course, the implementation correctly represents all storage specifiers but they are ignored except
by the unparser.

4In the rest of this thesis we use ‘struct’ to mean “struct or union”.

22

www.manaraa.com

int x x : 〈int〉
int *x x : 〈∗〉 〈int〉
double a[10] a : 〈[10]〉 〈double〉
char *(*fp)(int x) fp : 〈∗〉 〈(x : 〈int〉)〉 〈∗〉 〈char〉

A type specifier cannot be empty. (The last definition specifies a pointer to a function
taking an integer argument and returning a pointer to a char.) End of Example

Given a declaration ‘extern x : 〈∗〉 〈int〉’, ‘x’ is called the declarator, ‘extern’ the storage
specifier, and ‘〈∗〉 〈int〉’ the type.

The type qualifiers ‘const’ and ‘volatile’ are not used in this thesis, and are therefore
left out of the abstract syntax. The qualifiers can be introduced as “tags” on the base
and pointer type specifiers, if so desired.

A function definition consists of a type, an identifier, a parameter list, and a function
body. A function body is a list of local (automatic) variable definitions5 and a sequence
of statements.

A statement can be the empty statement, an expression statement, a conditional
statement, a loop statements, a labeled statement, a jump, a function return, or a block.
Notice that blocks do not support local definitions. For simplicity, all automatic variables
are assumed to have function scope.6

In the following we will often assume that ‘break’ and ‘continue’ are replaced by
‘goto’ to make the control flow explicit. Notice that explicit control flow easily can be
added to ‘break’ and ‘continue’ statements, so this is solely for notational purposes.

An expression can be a constant, a variable reference, a struct indexing, a pointer
dereference, an application of a unary or binary operator, function call, assignment, or pre-
and post increment operators. We often use increment as example operator. The special
call ‘alloc()’ denotes run-time memory allocation. Given a type name T , ‘alloc(T)’
returns a pointer to an object suitable for representation of T objects. The introduction
of this special form is motivated in Chapter 3. For now we will assume that ‘alloc()’
is used/inserted by the user. For ease of presentation, the unary operators ‘*’ (pointer
dereference) and ‘&’ (address operator) are treated as special forms.

We differentiate between the following types of call expressions: calls to ‘extern’
functions (e.g. ‘pow(2,3)’); direct calls to (module-)defined functions (e.g. ‘foo(2)’); and
calls via function pointers (e.g. ‘(*fp)(13)’). In the following we indicate calls of the
former category by ‘ef()’; direct calls to user defined functions by ‘f()’; and indirect calls
by ‘e0()’. The three kinds can be differentiated purely syntactically; notice that function
pointers may point to both defined and external functions.

2.2.2 Static semantics

The static semantics of C is defined by the Standard [ISO 1990]. We impose some addi-
tional requirements for the sake of uniformity.

5Notice, definitions, not declarations!
6The main reason for this restriction is given in Chapter 3.

23

www.manaraa.com

stmt ::= ; Empty statement
| exp Expression
| if (exp) stmt else stmt If-else
| switch (exp) stmt Multi-if
| case exp : stmt Case entry
| default : stmt Default entry
| while (exp) stmt While loop
| do stmt while (exp) Do loop
| for (exp ; exp ; exp) stmt For loop
| label : stmt Label
| goto label Jump
| break | continue Loop break/continue
| return | return exp Function return
| { stmt∗ } Block

exp ::= const Constant
| id Variable
| exp . id Struct index
| *exp Pointer dereference
| exp[exp] Array index
| &exp Address operator
| op exp Unary operator
| exp op exp Binary operator
| alloc (type) Runtime allocation
| id (exp∗) Extern function call
| id (exp∗) User function call
| exp (exp∗) Indirect call
| ++exp | --exp Pre-increment
| exp++ | exp-- Post-increment
| exp aop exp Assignment
| exp , exp Comma expressions
| sizeof (type) Sizeof operator
| (type-spec) exp Cast

Figure 6: Abstract syntax of C (part 2)

• External functions shall be declared explicitly.7

• Array specifiers in parameter definitions shall be changed to pointer specifiers.

• Functions shall explicitly return (a value, in the case of non-void functions).

• Switches shall have a default case.

• Optional expressions are not allowed (can be replaced by a constant, say).

• Array index expressions are arranged such that e1 in e1[e2] is of pointer type.

• The type specifier ‘short int’ shall be specified ‘short’ and similar for ‘long’. This
implies that base types can be represented by one type specifier only.

7Defined functions should not be declared, of course.

24

www.manaraa.com

• The storage specifier ‘extern’ shall only be applied to global identifiers.

• Conversions of function designators must be explicit, i.e. the address of a function
is taken by ‘fp = &f’, and an indirect call is written ‘(*fp)()’.

• Overloading of operators must be resolved, e.g. ‘-’ applied to pointers shall be syn-
tactically different from ‘-’ applied to integers.

Notice that all the conditions are purely syntactical, and can be fulfilled automatically
(e.g. during parsing). For example, return statements can be inserted in ‘void’ functions.

2.2.3 From C to abstract C

The structure of abstract syntax closely resembles concrete C, allowing informative feed-
back. The syntactic omissions include the ‘static’ specifier, the possibility of definitions
inside statement blocks and conditional expressions.8

The storage specifier ‘static’ has two interpretations. When applied to a global
definition, the definition gets file scope. When applied to a local definition, the variable is
statically allocated. By renaming of static identifiers and by lifting local (static) definitions
to the global level, file scope and static allocation, respectively, can be assured.9

Local definitions can be lifted to the function level by renaming of identifiers. This
transformation may introduce superfluous local variables, but these can be removed by
simple means.

Finally, a conditional expression ‘e1? e2:e3’ in an evaluation context context E[] can
be replaced by introduction of a new local variable ‘x’, and the transformation

if (e 1) x = e 2 else x = e 3; E[x]

where ‘x’ has same type as e1. This transformation is non-trivial; if the evaluation context
contains sequence points, e.g. a comma expression, the context must be broken down to
preserve evaluation order.

2.3 A representation of C programs

In this section we outline both an abstract and a concrete representation of (abstract) C.
Unlike other approaches we do not need a complicated representation, e.g. static single-
assignment representation or the like. Essentially, an abstract syntax tree and a static call
graph suffice.

In the last part of the section we consider some deficiencies regarding “sharing” of user
defined types in connection with type-based analysis, and describe methods for alleviating
these.

8The remaining constructs such as the ‘register’ specifier and ‘const’ qualifier can be added to the
abstract syntax as outlined in the previous section.

9For other reasons it may be desirable to include the ‘static’ specifier in the abstract syntax. For
example, an analysis might exploit the knowledge that a function is local.

25

www.manaraa.com

?

?

-

-

-

-

???
type definitions: struct S

x

next

〈int〉

〈∗〉 〈struct S〉

definitions: s 〈struct S〉

p 〈∗〉 〈struct S〉

Figure 7: Representation of some definitions

2.3.1 Program representation

A program p is denoted by a triple 〈T ,D,F〉 of a set T of type definitions, a set D
of global variable definitions and declarations, and a set F of function definitions. No
function definitions shall be contained in D.

A function definition consists of a quadruple 〈T, Dp, Dl, B〉 of a return type T , sets
Dp and Dl of parameter and local variable definitions, and the representation B of the
statement sequence making up the function body. For example, the function

int id(int x)
{

return x;
}

is abstractly described by 〈int, {x : 〈int〉}, {}, {Sreturn}〉 where Sreturn is the representa-
tion of the return statement.

A function body is represented as a single-exit control-flow graph 〈S,E, s, e〉, where S
is a set of statement nodes, E is a set of control-flow edges, and s, e are unique start and
exit nodes, respectively [Aho et al. 1986]. The end node e has incoming edges from all
return statements. The start node s equals the initial statement node.

A declaration (definition) is represented by the declarator node and a list of types.
We denote a type using a “bracket” notation, e.g. ‘int x’ is written x : 〈int〉.

A type definition is a list of member declarations. Figure 7 gives illustrative examples.

Example 2.4 Figure 7 depicts the representation of the definitions below.

struct S { int x; struct S *next; } s, *p;

Section 2.3.3 below elaborates on the representation of structure types. End of Example

Expressions are represented by their abstract syntax tree.

26

www.manaraa.com

2.3.2 Static-call graph

To conduct inter-procedural — or context-sensitive — program analysis, static-call graphs
are useful. A static-call graph abstracts the invocations of functions, and is mainly em-
ployed to differentiate invocations of functions from different contexts.

A function call is static or dynamic depending on the binding time of the function
designator. A call ‘f(. . .)’ is classified as static, since the name of the called function is
syntactically (statically) given. An indirect call ‘e(. . .)’ is classified as dynamic, since the
function invoked at run-time cannot (in general) be determined statically.10 A static-call
graph represents the invocations of functions due to static calls. Indirect calls are not
represented. Assume that all static calls are labeled uniquely.

A function may be called from different call-sites, e.g. if there are two calls ‘foo1()’
and ‘foo2()’, function ‘foo()’ is invoked in the contexts of calls 1 and 2. Each call gives
rise to a variant of the (called) function, corresponding to the context of the call.

Definition 2.1 A static-call graph SCG : CallLabel × Variant → Id × Variant maps a
call label and a variant number into a function name and a variant number, such that
SCG(l, m) = 〈f, n〉 if call-site l in the m’th variant of the function containing call-site l
invokes variant n of f . 2

Suppose that call-site 1 appears in ‘main()’, and function ‘foo()’ is called. Then
SCG(1, 1) = 〈foo, 2〉 represents that variant 1 of ‘main()’ calls variant 2 of ‘foo()’.

Example 2.5 Consider the following program.

int main(void) int foo(void) int bar(void)
{ { {

int (*fp)(void) = &bar(); return bar3(); return 1;
foo1(); } }
foo2();
(*fp)();
return 0;

}

The static-call graph is shown in Figure 8. Notice that the indirect call is not represented.
The tabulation of SCG is show below,

Call\Variant 1 2

1 〈foo, 1〉
2 〈foo, 2〉
3 〈bar, 1〉 〈bar, 2〉

where the call-sites refer to the program above. End of Example

Suppose a program contains recursive or mutually recursive functions. This implies
that an infinite number of function invocation contexts exist (at run-time). To represent
this, a 1-limit approximation is adopted.

10Naturally, an analysis can compute a set of functions that possibly can be invoked, see Chapter 4.

27

www.manaraa.com

³³³³³)
PPPPPq

? ?

main

foo1 foo2

bar1 bar2

Figure 8: Static-call graph for Example 2.5

Definition 2.2 The number of times a variant of a recursive function is created due to
the (direct or indirect) recursive call is called the k-limit. 2

The use of 1-limit means that a recursive call to a function is approximated by the
same context as the first invocation of the function.

Example 2.6 The static-call graph for the (useless) function

int rec(int x) { return rec1(x) }

is given by SCG(1, 1) = 〈rec, 1〉. End of Example

Better precision is obtained by larger k-limits. Even though our implementation sup-
ports arbitrary k-limits, we have not experimented with this. A static-call graph can be
computed by Algorithm 2.1.

Algorithm 2.1 Computation of static-call graph.

invoke(main,1);
/* invoke: build scg for variant ‘var’ of function ‘fun’ */
void invoke(fun, var)
{

for (f l() in StaticCalls(fun)) {
if (v = stack.seenB4(<f,var>,K_LIMIT))

/* approximate with variant v */
scg.insert(<l,var> = <f,v>);

else {
/* create new variant and invoke it */
v = next_variant(f);
stack.push(<f,v>);
scg.insert(<l,var> = <f,v>);
invoke(f,v);
stack.pop();

}
}

The variable ‘stack’ is a stack of function identifiers, variants. The method ‘seenB4()’
scans the stack to see whether a function has been invoked ‘K LIMIT’ number of times
before. In the affirmative case, the variant number is returned. Variant 0 is reserved for
a special purpose, see Chapter 4. 2

28

www.manaraa.com

a: 〈∗〉 〈[10]〉 〈int〉 x: 〈int〉
=: 〈int〉

[]: 〈int〉 x: 〈int〉

*: 〈[10]〉 〈int〉

a: 〈∗〉 → 〈[10]〉 〈int〉

¡
¡¡ª

@
@@R

¡
¡¡ª

¡
¡¡ª

6 6

Figure 9: Representation of declarations and an expression ‘(*a)[2] = x’

Notice that the number of variants of a function may grow exponentially, but in practice
this seldom happens. Strategies for preventing this has been discussed in the literature
[Cooper et al. 1993]. We will not consider this issue here.

A remark. Our definition of static-call graph differs from the usual notion of call graphs
[Aho et al. 1986]. Given a program, a static-call graph approximates the invocations of
functions at run-time starting from the ‘main()’ function. Traditional call graphs simply
represent the set of functions a function may call.

Example 2.7 Consider the program in Example 2.5. A call graph (in the usual sense)
shows that ‘foo()’ calls ‘bar()’. The static-call graph represents that variant 1 of ‘foo()’
calls variant 1 of ‘bar()’, and similarly for variant 2. End of Example

2.3.3 Separation of types

We shall assume that each expression is attributed with the type of the expression.

Example 2.8 The representation of ‘int (*a)[10], x’ and the assignment ‘(*a)[2] =

x’ is shown in Figure 9. In principle, a declarator’s type specifier lists can be shared by
expression nodes, such that an expression points to the relevant part of the declarator’s
type specifier list. Since we are going to associate value flow information with specifiers,
this would result in a less precise representation, e.g. information associated with different
occurrences of a variable would be merged, so we refrain from this. End of Example

In type-based analysis it is convenient to associate value flow information with type
specifiers. For example, the binding-time analysis of Chapter 5 assign a binding time flag
to each type specifier.

29

www.manaraa.com

In the case of non-struct type, a “new” type specifier list is assigned to each definition.
For example, given the definitions ‘int x, y’, the specifier 〈int〉 is not shared between
‘x’ and ‘y’; a fresh instance is created for each.

Suppose that the struct definition

struct Node { int x; struct Node *next; }

and the definitions ‘struct Node s,t’ are given. Typically, the information associated
with the types of members determines the lay-out of structs in memory, the appearance
of a residual struct definition etc.

A consequence of this is that completely unrelated uses of a struct type may influence
each other. For example, in the case of binding-time analysis, if ‘s.x’ is assigned a
dynamic value, ‘t.x’ becomes dynamic as a “side-effect”, since the definition of the type
is “shared”. Highly unfortunately if ‘s’ and ‘t’ are otherwise unrelated.

To avoid this, fresh instances of struct definitions can be created for each use. For
example, an instance ‘struct S1’ can be created for ‘s’ and similarly an instance ‘struct
S2’ can be assigned as type of ‘t’.

Example 2.9 In Chapter 3 we develop a program transformation that outputs a C pro-
gram, and consequently also struct definitions. Suppose that the program contains an
assignment ‘t = s’. Since C uses type equivalence by name, the types of ‘s’ and ‘t’ must
be equal. This means that ‘s’ and ‘t’ must be given the same instance of the underlying
struct type, e.g. ‘struct S1’.

A value-flow analysis can accomplish this by a single traversal of the program where
the (struct) type instances in assignments, parameters assignments and function returns
are union-ed. End of Example

To accommodate recursive struct definitions, a k-limit approximation is adopted. That
is, k instances of a recursive struct definition are created. In our implementation, we use a
1-limit, since recursive structs are likely to be used in the “same” context. Larger k-limits
give better precision.

2.4 Dynamic semantics

The dynamic semantics of abstract C is specified by the means of a big-step structural
operational semantics [Plotkin 1981,Hennessy 1990,Nielson and Nielson 1992b]. The aim
of this section is not to compete with the Standard [ISO 1990], but to provide a concise
description that can serve as a foundation for specifying and reasoning about program
analyses and transformations. We do not, for instance, specify the behaviour of standard-
library functions and leave unmentioned many of the implicit conversions that take place.

The specification comes in four parts: inference systems for functions, statements,
expressions and declarations. Further, we informally describe the modeling of the store.
Precise description of memory management is not relevant for this exhibition, and more-
over depends on an implementation. As usual, the store is assumed to be a consecutive

30

www.manaraa.com

set of locations where a separate part constitutes a program stack. Heap-allocation is
performed in an isolated part of the store.

The semantics assigns meaning to programs — not translation units. Thus, in prin-
ciple, no external function calls exist. For convenience, we shall regard calls to library
functions as ‘extern’ calls, and use a pre-defined function F : Id × Value∗ × Store →
Value × Store to describe their behaviour. For example, F (pow, (2, 3),S) = (8,S). This
does not include the <setjmp.h> functions, which we do not describe.

2.4.1 Notations and conventions

The set of identifiers is denoted by Id. We adopt the convention that v denotes a variable;
f a user-defined function, and ef an externally defined (library) function. The set of
declarations is denoted by Decl. We use dp to range over parameter declarations and dl

to range over local definitions when it is convenient to differentiate. The set Expr is the
set of expressions, and Stmt denotes the set of statements. The symbol S ranges over
statements and Seq ranges over statement sequences. The set of function is denoted by
Fun, and the set of types by Type.

The set of denotable values is called Value, and includes for example integers, locations,
and objects of array and struct types. The set of locations is denoted by Loc.

An environment is a map E : Id → Loc from identifiers to locations. The store is
modeled as a map S : Loc → Value from locations to values. Since we solely consider
type annotated programs we omit projections on values. For instance, we write S(v) for
S(v ↓ Loc), when v is an address.

For simplicity we will not be explicit about errors. We courageously assume that
external functions are “well-behaved”, e.g. set the ‘errno’ variable in the case of errors,
and rely on stuck states. Infinite loops are modeled by infinite derivations. Further, we
assume that output is “delivered” by writes to reserved memory locations (all taken care
of by library functions).

2.4.2 Semantics of programs

Recall that a program p = 〈T ,D,F〉 is a triple of type definitions, global declarations and
function definitions. Type definitions are merely interesting for static program elaboration
and for storage allocation, so we ignore these below.

Definition 2.3 Let p = 〈T ,D,F〉 be a program, and F a meaning function for library
functions. Let S0 be a store. The meaning of the program applied to the values v1, . . . , vn

is the value v, [[p]](v1, . . . , vn) ⇒ v, if

• `decl 〈di, 0, Ei−1,Si−1〉 ⇒ 〈Ei,Si〉 for di ∈ D, i = 1, . . . , m

• E = En ◦ [fi 7→ lfi
], fi ∈ F , i = 1, . . . , n where lfi

are fresh locations,

• S = Sn,

• E `fun 〈E(fmain, (v1, . . . , vn),S〉 ⇒ 〈v,S ′〉 where fmain ∈ F is the ‘main’ function,

where `decl is defined in Section 2.4.6 and `fun is defined in Section 2.4.3. 2

31

www.manaraa.com

[fun]

f ≡ T f(dp
1, . . . , d

p
m){dl

1, . . . , d
l
n Seq}

`decl 〈dp
i , vi, Ei,Si〉 ⇒ 〈Ei+1,Si+1〉

`decl
〈
dl

i, 0, Em+i,Sm+i

〉 ⇒ 〈Em+i+1,Sm+i+1〉
Em+n+1 `stmt 〈Seq,Sm+n+1〉 ⇒ 〈v,S ′〉
E1 `fun 〈f, (v1, . . . , vm),S1〉 ⇒ 〈v,S ′〉

Figure 10: Dynamic semantics for function invocation

The initial store is updated with respect to the global definitions. Next, the environ-
ment is updated to contain the addresses of functions. Finally, the value of the program
is determined by the relation `fun, which is defined below.

2.4.3 Semantics of functions

A function takes a list of values and the store, and executes the statements in the context
of an environment extended with the locations of parameters and local variables. This is
specified by the means of the relation

`fun: Loc× Value∗ × Store → Value× Store

defined in Figure 10. The result is a value and a (possibly) modified store.

Definition 2.4 Let f ∈ F be a function, and E, S an environment and a store, respec-
tively. Let v1, . . . , vn be a list of values. The function application f(v1, . . . , vn) returns
value v and store S ′ if

E `fun 〈f, (v1, . . . , vn),S〉 ⇒ 〈v,S ′〉
where `fun is defined in Figure 10. 2

Operationally speaking, the rule can be explained as follows. First, storage for param-
eters and local variables is allocated by the means of the `decl relation. Parameters are
initialized with the actual values vi. Local variables are initialized with 0.11 Finally, the
statements are executed in the extended environment.

2.4.4 Semantics of statements

Execution of a statement possibly modifies the store, and transfers the control either
implicitly to the next program point, or explicitly to a named (labelled) program point.12

The semantics is specified by the means of the relation

`stmt Stmt× Store → Value> × Store

defined in Figure 11.

11The Standard specifies that local variables may contain garbage so this choice adheres to the
definition.

12Recall that we do not consider setjmp/longjmp.

32

www.manaraa.com

[empty] E `stmt 〈 ; ,S〉 ⇒ 〈>,S〉
[expr]

E `exp 〈e,S〉 ⇒ 〈v,S ′〉
E `stmt 〈e,S〉 ⇒ 〈>,S ′〉

[if-true]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 E `stmt 〈S1,S ′〉 ⇒ 〈∇,S ′′〉 v 6= 0
E `stmt 〈if (e) S1 else S2,S〉 ⇒ 〈∇,S ′′〉

[if-false]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 E `stmt 〈S2,S ′〉 ⇒ 〈∇,S ′′〉 v = 0
E `stmt 〈if (e) S1 else S2,S〉 ⇒ 〈∇,S ′′〉

[switch-case]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 E `stmt 〈Sv,S ′〉 ⇒ 〈∇,S ′′〉 case v: Sv in S1

E `stmt 〈switch (e) S1,S〉 ⇒ 〈∇,S ′′〉

[switch-default]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 E `stmt 〈S0,S ′〉 ⇒ 〈∇,S ′′〉 default: S0 in S1

E `stmt 〈switch (e) S1,S〉 ⇒ 〈∇,S ′〉

[while-true]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 E `stmt 〈S1; while (e) S1,S ′〉 ⇒ 〈∇,S ′′〉 v 6= 0
E `stmt 〈while (e) S1,S〉 ⇒ 〈∇,S ′′〉

[while-false]
E `exp 〈e,S〉 ⇒ 〈v,S ′〉 v = 0
E `stmt 〈while (e) S1,S〉 ⇒ 〈>,S ′〉

[do-conv]
E `stmt 〈S1; while (e) S1),S〉 ⇒ 〈∇,S ′〉
E `stmt 〈do S1 while (e),S〉 ⇒ 〈∇,S ′〉

[for]
E `stmt 〈e1; while (e2) { S1;e3 },S〉 ⇒ 〈∇,S ′〉
E `stmt 〈for (e1;e2;e3) S1,S〉 ⇒ 〈∇,S ′〉

[label]
E `stmt 〈S1,S〉 ⇒ 〈∇,S ′〉
E `stmt 〈l : S1,S〉 ⇒ 〈∇,S ′〉

[goto]
E `stmt 〈Seqm,S〉 ⇒ 〈∇,S ′〉
E `stmt 〈goto m,S〉 ⇒ 〈∇,S ′〉

[return] E `stmt 〈return,S〉 ⇒ 〈0,S〉
[return]

E `exp 〈e,S〉 ⇒ 〈v,S ′〉
E `stmt 〈return e,S〉 ⇒ 〈v,S ′〉

[block]
E `stmt 〈Seq,S〉 ⇒ 〈∇,S ′〉
E `stmt 〈{ Seq },S〉 ⇒ 〈∇,S ′〉

[seq1]
E `stmt 〈S,S〉 ⇒ 〈v,S ′〉
E `stmt 〈S; Seq,S〉 ⇒ 〈v,S ′〉

[seq2]
E `stmt 〈S,S〉 ⇒ 〈>,S ′〉 E `stmt 〈Seq,S ′〉 ⇒ 〈∇,S ′′〉
E `stmt 〈S; Seq,S〉 ⇒ 〈∇,S ′′〉

Figure 11: Dynamic semantics for statements

The set Value> = Value ∪ {>} is employed to model the absence of a value. The
element > denotes a “void” value. We use v to range over Value and ∇ to range over
Value>.

Definition 2.5 Let Seq be a statement sequence in a function f , and E, S an environ-
ment and a store in agreement with f . The meaning of Seq is the value v and the store
S ′ if

E `stmt 〈Seq,S〉 ⇒ 〈v,S ′〉
where `stmt is defined in Figure 11. 2

33

www.manaraa.com

[const] E `exp 〈c,S〉 ⇒ 〈ValOf(c),S〉
[var] E `exp 〈v,S〉 ⇒ 〈S(E(v)),S〉
[struct]

E `lexp 〈e1,S〉 ⇒ 〈l1,S1〉
E `exp 〈e1.i,S〉 ⇒ 〈S1(l1 + Offset(i),S1〉

[indr]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉
E `exp 〈∗e1,S〉 ⇒ 〈S(v1),S1〉

[array]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 E `exp 〈e2,S〉 ⇒ 〈v2,S2〉
E `exp 〈e1[e2],S〉 ⇒ 〈S2(v1 + v2),S2〉

[address]
E `lexp 〈e,S〉 ⇒ 〈v,S1〉
E `exp 〈&e,S〉 ⇒ 〈v,S1〉

[unary]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉
E `exp 〈o e1,S〉 ⇒ 〈O(o)(v1),S1〉

[binary]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 E `exp 〈e2,S1〉 ⇒ 〈v2,S2〉
E `exp 〈e1 o e2,S〉 ⇒ 〈O(o)(v1, v2),S2〉

[alloc] E `exp alloc(T) ⇒ 〈l,S1〉 l fresh location

[extern]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 . . . E `exp 〈en,Sn−1〉 ⇒ 〈vn,Sn〉
F (f, (v1, . . . , vn),Sn) = 〈v,S ′〉
E `exp 〈f(e1, . . . , en),S〉 ⇒ 〈v,S ′〉

[user]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 . . . E `exp 〈en,S〉 ⇒ 〈vn,Sn〉
E `fun 〈E(f), (v1, . . . , vn),S〉 ⇒ 〈v,S ′〉
E `exp 〈f(e1, . . . , en),S〉 ⇒ 〈v,S ′〉

[call]

E `exp 〈e0,S〉 ⇒ 〈v0,S0〉
E `exp 〈e1,S0〉 ⇒ 〈v1,S1〉 . . . E `exp 〈en,Sn−1〉 ⇒ 〈vn,Sn〉
E `fun 〈v0, (v1, . . . , vn),Sn〉 ⇒ 〈v,S ′〉
E `exp 〈e0(e1, . . . , en),S〉 ⇒ 〈v,S ′〉

[pre]
E `lexp 〈e1,S〉 ⇒ 〈l1,S1〉 S1 = S[(S(l) + 1)/l]
E `exp 〈++e1,S〉 ⇒ 〈S1(l),S1〉

[post]
E `lexp 〈e1,S〉 ⇒ 〈l1,S1〉 S1 = S[(S(l) + 1)/l]
E `exp 〈e1++,S〉 ⇒ 〈S(l),S1〉

[assign]
E `lexp 〈e1,S〉 ⇒ 〈l1,S1〉 E `exp 〈e2,S1〉 ⇒ 〈v2,S2〉
E `exp 〈e1 = e2,S〉 ⇒ 〈v2,S2[v2/l1]〉

[comma]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 E `exp 〈e2,S1〉 ⇒ 〈v2,S2〉
E `exp 〈e1, e2,S〉 ⇒ 〈v2,S2〉

[sizeof] E `exp 〈sizeof(T),S〉 ⇒ 〈Sizeof(T),S〉
[cast]

E `exp 〈e1,S〉 ⇒ 〈v1,S1〉
E `exp 〈(T)e1,S〉 ⇒ 〈v1,S1〉

Figure 12: Dynamic semantics for expressions

34

www.manaraa.com

The empty statement has no effect, and the value of an expression statement is dis-
carded. The store may, however, be modified.

An if statement executes the then-branch if the expression evaluates to a value dif-
ferent from 0. Otherwise the else-branch is executed. In the case of a switch, the
corresponding case entry is selected if any match, otherwise the default rules is chosen.

The rule for while executes the body while the test is non-zero. The do and for

statements are assigned meaning by transformation into semantically equivalent while

loops [Kernighan and Ritchie 1988, Appendix A].
A label is ignored, and in the case of a goto, the control is transferred to the cor-

responding statement sequence. A return statement terminates the execution with the
value of the expression (and zero otherwise). The statements in blocks are executed in
sequence until a return statement is met.

2.4.5 Semantics of expressions

Evaluation of an expression may modify the store. Actually, in C, expressions are the
sole construct that can affect the store. The evaluation is described by the means of the
relations

`exp,`lexpr Expr× Store → Value× Store

defined in Figure 12 and 13. The former “computes” values, the latter lvalues. For
simplicity we ignore that “void” functions return no value.

Definition 2.6 Let e ∈ Expr be an expression in a function f , executed in the environ-
ment E and store S. The meaning of e is the value v and store S ′ if

E `exp 〈e,S〉 ⇒ 〈v,S ′〉
where `exp is defined in Figure 12 and 13. 2

The semantic value of a syntactic constant is given by the meaning function ValOf.
The value of a variable is looked up in the store through the environment. Notice that
in the case of an array variable reference, an implicit conversion from “array of T” to
“pointer to T” takes place. This is not shown.

To access the value of a field, the struct object’s address is calculated and the member’s
offset added. In the case of pointer dereference or an array indexing, the store is accessed
at the location the subexpression evaluates to. Recall that array index expressions are
assumed arranged such that the subexpression e1 is of pointer type. The address operator
is assigned meaning via the lvalue relation.

The rules for unary and binary operator applications use the (unspecified) semantic
function O. Recall that overloading is resolved during parsing. The rule of ‘alloc()’
returns the address of a free, consecutive block of memory of suitable size. External
function calls, i.e. calls to library functions, use the F meaning function.

A function call is evaluated as follows. First, the arguments (and possibly the function
expression) are evaluated. Next the return value is determined by the means of the `fun

relation.

35

www.manaraa.com

[var] E `lexp 〈v,S〉 ⇒ 〈E(v),S〉
[struct]

E `exp 〈l1,S〉 ⇒ 〈l1,S1〉
E `lexp 〈e1.i,S〉 ⇒ 〈l1 + Offset(i),S1〉

[indr]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉
E `exp 〈∗e1,S〉 ⇒ 〈v1,S1〉

[array]
E `exp 〈e1,S〉 ⇒ 〈v1,S1〉 E `exp 〈e2,S1〉 ⇒ 〈v2,S2〉
E `lexp 〈e1[e2],S〉 ⇒ 〈e1 + e2,S2〉

Figure 13: Dynamic semantics for left expressions

Pre and post increment expressions update the location of the subexpression, and an
assignment updates the lvalue of the left hand side expression. Comma expressions are
evaluated in sequence, and the rule for sizeof uses the semantic function SizeOf. The
rules for cast is trivial (since conversions are left implicit).

The rules for computation of an expression’s lvalue are straightforward. Notice that
since function identifiers are bound in the environment to locations, the lvalue of an
expression ‘&f’ correctly evaluates to the location of ‘f’.

2.4.6 Semantics of declarations

The dynamic semantics for declarations amount to storage allocation. External declara-
tions simply update the environment with the address of the function, which we assume
available. This is necessary since the address of library functions may be taken. Defini-
tions of global variables allocate some storage and update the environment to reflect this.
This is expressed by the relation

`decl: Decl× Value× Env× Store → Env× Store

where the value is an initializer.

Definition 2.7 Let d ∈ Decl be a declaration, and E, S an environment and a store,
respectively. Let v ∈ Value. Then the evaluation of d yields environment E ′ and S ′ if

`decl 〈d, v, E ,S〉 ⇒ 〈E ′,S ′〉
where `decl is defined in Figure 14. It holds that S ′(E ′(x)) = v where x is the declarator
of d. 2

The rules are justified as follows. Only variable definitions cause memory to be al-
located. The semantics of allocation is expressed via the relation `alloc briefly defined
below. The rules for external variable and functions simply update the environment with
the address of the declarator.

36

www.manaraa.com

[var]
`alloc 〈T,S〉 ⇒ 〈l,S ′〉
`decl 〈x : T, v, E ,S〉 ⇒ 〈E [x 7→ l],S ′[v/l]〉

[evar]
Address of v is l
`decl 〈extern v : T, v, E ,S〉 ⇒ 〈E ◦ [v 7→ l],S ′〉

[efun]
Address of f is l
`decl 〈extern f : T, v, E ,S〉 ⇒ 〈E ◦ [v 7→ l],S ′〉

Figure 14: Dynamic semantics for declarations

2.4.7 Memory management

Precise modeling of storage is immaterial for our purposes, and further depends on an
implementation. The Standard requires an implementation to adhere to the following
requirements which we take as axioms.

• Variables shall be allocated in sequence. Objects of base type occupy a suitable
number of bytes depending on the machine. Members of structs shall be allocated
in order of declaration such that member 1 is allocated at location 0 of object.
Elements of arrays shall be stored by row.

• The store is managed as a stack.

• Run-time memory allocation is accomplished from a separate space of storage.

We use the relation `alloc: Type × Store → Loc × Store to model the allocation of an
object of a particular type. Intuitively, for a type T and store S, `alloc 〈T,S〉 ⇒ 〈l,S ′〉
holds if S ′ is the store resulting from the allocation in store S of memory for an object of
type T at location l. We ignore the deallocation aspect.

2.4.8 Some requirements

The following properties are of importance for later chapters, and therefore briefly men-
tioned here.

• A pointer to a struct or union points also, when suitably converted, to the first
member [ISO 1990, Paragraph 6.5.2.1].

• Common initial members of members of structs in a union are guaranteed to be
shared. Thus, if a struct member of a union is assigned, the value can be accessed
via another union member [ISO 1990, Paragraph 6.3.2.3].

• Pointer arithmetic is only allowed to move a pointer around inside an array or
one past the last element. Programs may not rely on variables to be allocated in
sequence (except members of a struct that are allocated in order of definition, but
where padding may be inserted) [ISO 1990, Paragraph 6.3.6].

37

www.manaraa.com

This completes the description of the dynamic semantics of abstract C. We conjecture
that the semantics complies to the Standard. Notice, however, the semantics in some
respect is more specified than the Standard. For instance, the evaluation order is fixed.
Since conforming programs are not allowed to rely on evaluation order, this does not
violate the correctness of the semantics.

2.5 Related work

In our Master’s Thesis we gave an operational semantics for Core C, a subset of C including
functions, global variables, structs and arrays [Andersen 1991]. Gurevich and Huggins
have specified the semantics of the core part of C by the means of evolving algebras
[Gurevich and Huggins 1992].

Computation of Fortran programs’ call graphs has been studied in numerous works
[Ryder 1979,Callahan et al. 1990,Lakhotia 1993]. Contrary to C, Fortran has procedure
variables, but no function pointers. Hendren et al. have developed a context-sensitive
invocation graph analysis supporting function pointers [Hendren et al. 1993]. Their anal-
ysis is coupled with a point-to analysis which approximates the set of functions a function
pointer may point to. Thus, their invocation graphs are more precise than ours, but more
expensive to compute.

The literature reports several program representations, each suitable for different pur-
poses. Hendren et al. use a Simple representation where complex expressions are broken
down into three-address code [Hendren et al. 1992]. The Miprac environment by Harri-
son et al. uses a representation where computation is expressed via primitive operations
[Harrison III and Ammarguellat 1992].

2.6 Summary

We have described the abstract syntax and semantics of the C programming language.
Furthermore, we have devised a representation that accommodates user feedback from
program analysis, and described static-call graphs.

38

www.manaraa.com

Chapter 3

Generating extensions

We develop an automatic generating extension generator for the Ansi C programming
language. A generating extension of a program p produces, when applied to partial pro-
gram input s, a specialized version ps of p with respect to s. A generating extension
generator is a program transformation that converts a program into its generating exten-
sion.

Partial evaluation is a quickly evolving program specialization technique that combines
generality with efficiency. The technique is now being applied to realistic applications and
languages. Traditionally, partial evaluation has been accomplished by partial evaluators
‘mix’ based on symbolic evaluation of subject programs. Expressions depending solely on
known input are evaluated while code is generated for constructs possibly depending on
unknown values.

This approach has several drawbacks that render the development of ‘mix’ for realistic
imperative languages hard. The conspicuous problems include preservation of semantics,
memory usage, and efficiency. To evaluate static expressions, ‘mix’ contains an evaluator.
However, in the presence of multi-level pointers, user defined structs, an address operator,
casts, function pointers and implementation-defined features such as e.g. a sizeof oper-
ator, semantical correctness becomes hard to establish, both in practice and in theory.
Further, the memory usage of a specializer is considerably larger than by direct execu-
tion, sometimes beyond the acceptable. Finally, symbolic evaluation is known to be an
order of magnitude slower than direct execution. In practice this may make specialization
infeasible if possible at all.

A generating extension, on the other hand, evaluates static expressions directly via
the underlying implementation. Thus, the semantic correctness of the evaluation comes
for free; there is no representation overhead of static values, and no symbolic evaluation
occurs.

This chapter investigates specialization of all parts of the Ansi C programming lan-
guage, and develops the corresponding transformations of constructs into their generating
equivalents. We study specialization of functions and their interaction with global vari-
ables; program point specialization of statements; treatment of pointers and runtime
memory allocation; specialization-time splitting of arrays and structs, and various other
aspects.

39

www.manaraa.com

- -p-gen -p-spec

? ?
input static

do

gen

gegen

static

stat stmt

dyn stmt
stat stmt

dyn stmt

dyn stmt

dyn

value

p-ann p-gen p-spec

Boxes are data (programs). Horizontal arrows denote execution

Figure 15: Simplified structure of generating-extension generator

3.1 Introduction

Program specialization by the means of partial evaluation is now a mature and well-
understood technology. Even though most research has focussed on functional languages,
there has been some progress reported on specialization of imperative programming lan-
guages, e.g. Fortran [Baier et al. 1994], Pascal [Meyer 1992] and C [Andersen 1993b].
During extension of previous work we faced several difficulties that seemed hard to in-
corporate into existing partial evaluators. Two substantial problems were preservation of
semantics and efficiency — two central issues in automatic program transformation.

An example. The specialization of a ray tracer took several minutes using a previous
version of C-Mix which was based on symbolic evaluation. The current version, which is
based on the generating extension transformation developed in this chapter, accomplishes
the task in seconds.

What went wrong in the old version of C-Mix? The basic problem is that the specializer
works on a (tagged) representation of the static values and spends much time on tag
testing and traversal of the representation. A generating extension, on the other hand,
works directly on static values.

A simplified view of a generating-extension generator ‘gegen’ is shown in Figure 15.
Input to the generator is a binding-time annotated program ‘p-ann’, and output the
generating extension ‘p-gen’. The static parts of the program appear in the generating
extension as statements to be executed, whereas the dynamic parts are transformed into
code generating statements. When run, the generating extension inputs the static data;
executes the static statements, and generates code for the dynamic statements. The
output, ‘p-spec’, is a specialized version ‘p-spec’ of ‘p’. The specialized program inputs
the dynamic data and yields a value.

In this chapter we develop a generating-extension generator that transforms a program
p into its generating extension pgen. Since the transformation depends on the specialization
of program constructs, e.g. expressions, statements, data structures etc., we also cover
specialization of all aspects of the C programming language.

40

www.manaraa.com

3.1.1 The Mix-equation revisited

Recall the Mix-equation from Section 1.2.1. Let p be a two-input subject program in
language C over data domain D, and suppose s, d ∈ D. Execution of p on s, d is denoted
by [[p]]C(s, d) ⇒ v, where v ∈ D is the result (assuming any is produced). By ppgm we
denote the representation, or encoding in C, of p into some data structure pgm.

A partial evaluator ‘mix’ fulfills that

if [[mix]]C(ppgm, sval) ⇒ ps
pgm and [[p]]C(s, d) ⇒ v then [[ps]](d) ⇒ v

The use of implication “if” as opposed to bi-implication allows ‘mix’ to loop.
Traditionally, partial evaluation has been accomplished by the means of symbolic eval-

uation of subject programs. Operationally speaking, ‘mix’ evaluates the static constructs1

and generates code for the dynamic constructs. To evaluate static expressions and state-
ments, ‘mix’ contains an interpreter. Disadvantages of this interpretative approach in-
clude:

• The evaluator must correctly implement the semantics of the subject language.

• During the specialization, the subject program must be represented as a pgm data
structure inside ‘mix’.

• Static data must be encoded into a uniform data type for representation in ‘mix’.2

• Symbolic evaluation is an order of magnitude slower than execution.

• Compiler and program generator generation is hindered by double encoding of the
subject programs, cf. the Futamura projections in Section 1.2.2.

To evaluate static expressions ‘mix’ employs an evaluator which must be faithful to
the Standard, i.e. a conforming implementation of C. However, implementation of such an
evaluator is both a non-trivial and error prone task. Consider for example interpretation
of pointer arithmetic; conversion (cast) of a pointer to a struct to a pointer to the first
member; representation of function pointers and evaluation of the address operator. Even
though it in principle is possible to implement a correct evaluator, it is in practice hard
to establish its correctness.

Furthermore, evaluators work on representations of values. For example, a value can
be represented (assuming the evaluator is written in C) via a huge union Value with entries
for integers, doubles, pointers to Values, etc. The possibility of user-defined structs and
unions renders this representation problematic.

Consider representation of structs. Since the number of members is unknown,3 struct
must be represented external to a Value object, for instance by a pointer to an array
of Values representing the members. Now suppose that a call (in the subject program)

1An expression is classified ‘static’ if it solely depends on known input. Otherwise it is ‘dynamic’.
2In dynamically-typed languages, for example Lisp, the ‘encoding’ is done by the underlying system.
3Actually, the Standard allows an upper limit of 127 members in a struct but this seems rather

impractical [ISO 1990, Paragraph 5.2.4.1].

41

www.manaraa.com

passes a struct as argument to a function, and recall that structs are passed call-by-value.
This representation does not, however, “naturally” implement call-by-value passing of
structs: when the representation of a struct is copied (call-by-value) only the pointer to the
array is copied, not the array. The copying must be done explicitly, necessitating objects
to be tagged at mix-time with their size and type. This increases memory usage even
further [Andersen 1991,Launchbury 1991,De Niel et al. 1991]. Some empirical evidence
was given in the introduction; the specializer spends a considerably time comparing tags
and traversing the representation of static data.

Finally, consider generation of program generators by self-application of ‘mix’. In
previous work we succeeded in self-applying the specializer kernel for a substantial subset
of C [Andersen 1991], but the program generators suffered greatly from the inherited
representation of programs and values. For example, if a generating extension of the
power function ‘pow()’ was produced by self-application of the specializer to ‘pow()’, the
specialized programs obtained by execution of the extension ‘pow-gen()’ used the indirect
Value representation of objects — this is the difference between ‘cogen’ and ‘gegen’, see
Section 1.2.3. It is highly undesirable when specialized programs are intended to be linked
with other C programs.

3.1.2 Generating extensions and specialization

Recall that a generating extension pgen of a program p is a program that produces spe-
cialized versions of p when applied to parts s of p’s input. Let s, d ∈ D and assume
[[p]]C(s, d) ⇒ v. Then one has

if [[pgen]]C(s) ⇒ ps
pgm then [[ps]](d) ⇒ v,

where v ∈ D is the result. Thus, a generating extension, applied to input s, yields a
specialized program ps of p with respect to s.

A generating-extension generator ‘gegen’ takes a program p and returns a generating
extension pgen of p:

[[gegen]]C(pann
pgm) ⇒ pgen

pgm

cf. Section 1.2.3. Notice that the input to ‘gegen’ actually is a binding-time annotated
program, and not just a program, as Section 1.2.3 suggests.

A transformer ‘gegen’ can be employed to specialize programs in a two-stage process:

[[gegen]](pann
pgm) ⇒ pgen

pgm Produce the generating extension
[[pgen]]C(s) ⇒ ps

pgm Produce the specialized program

for all programs p and static input s.
Operationally speaking, a generating extension generator works as follows. Given a

binding time annotated program, it in essence copies static constructs unchanged into pgen

for evaluation during execution of the extension. Dynamic constructs in p are transformed
into calls in pgen to code generating functions that produce residual code. The residual
code makes up the specialized program. This is illustrated in Figure 15.

42

www.manaraa.com

Both ‘gegen’ and the automatically produced compiler generator ‘cogen’ produce gen-
erating extensions, but the residual programs (may) differ.4 Since ‘cogen’ uses the same
representation of objects as ‘mix’, specialized programs inherit the Value representation.
On the other hand, ‘gegen’ uses a direct representation of values, and produces residual
declarations with the same types as given by the subject program.

Consider again the issues listed in the previous section.

• During specialization, that is, when the generating extension is run, static constructs
are evaluated directly by the underlying implementation, in other words an extension
is compiled and run as a ordinary program. Thus there is no need for an interpreter.

• In the generating extension, the subject program is not “present”, that is, the
extension does not carry around a program data structure. Only the generating
extension generator needs the subject program.

• Static values are represented directly. There is no need for an expensive (in time
and storage usage) universal Value encoding.

• There is essentially no interpretation overhead: static statements and expressions
are evaluated, not interpreted.5

• The program generator ‘gegen’ does not inherit its types from ‘mix’. Hence, program
generators created by ‘gegen’ are (usually) more efficient than possible with ‘cogen’.

In addition, we identify the following advantages.
Suppose that a program is to be specialized with respect to several different static

values. Using ‘mix’, the subject program must be evaluated for every set of static values.
By using ‘gegen’, the subject program need only be examined once — when the generating
extension is produced. The static computations will be redone, but not the source program
syntax analysis etc.

Next, suppose that a commercial product uses program specialization to speed up
program execution. Using the ‘mix’ technology, a complete partial evaluator must be
delivered with the software; by using ‘gegen’, only the generating extension (which is
derived from the original software) needs to be released.

Naturally, the same effect can, in principle, be achieved by ‘cogen’, but this requires
a self-applicable ‘mix’, and it does not solve the representation problem.

Finally, due to the simplicity of the generating extension transformation, it becomes
possible to argue for the correctness — a task which seems hopeless in the case of a
traditional partial evaluator for any non-trivial language.

Definition 3.1 (The Gegen-equation) Let p be a program in a language C over data
domain D, and s ∈ D. A generating extension generator ‘gegen’ fulfills that

if [[gegen]](pann
pgm) ⇒ pgen

pgm then [[pgen]]C(s) ⇒ ps
pgm

4However, it requires the existence of a self-applicable mix.
5A truth with modification: statements and expressions are evaluated directly, but the memory man-

agement imposes a penalty on the program execution, see Section 3.10.

43

www.manaraa.com

where ps is a residual version of p with respect to s. 2

Naturally, a program generator must always terminate. However, we allow a generating
extension to suffer from the same imperfect termination properties as specializers. That is,
they may fail to terminate on some (static) input s when the ordinary program execution
terminates on s and all dynamic input. Nontermination can be due to two reasons.
Either the subject program loops on the static data for all dynamic input. It is normally
acceptable for a specializer to loop in this case. However, it may also be the case that
the generating extension loops even though normal direct execution terminates. This is,
of course, annoying. In the following we assume that generating extensions terminate
“often” enough. In Section 3.14 we consider the termination problem in greater detail.

3.1.3 Previous work

Ershov introduced the term generating extension G(p) of a program p, defined such that
[[G(p)]](x) = [[M]](p, x) for all data x, where M is a “mixed computation”. The framework
was developed for a small toy language with assignments and while-loops.

Pagan described hand-writing of generating extensions for some example programs
[Pagan 1990]. The techniques are to our knowledge not extended nor automated to cope
with languages supporting pointers, user-defined structs, runtime memory allocation etc.
in a systematic way.

The RedFun project contained a hand-written compiler generator for a subset of Lisp
[Beckman et al. 1976]. The system aimed towards optimization of compilers by elimina-
tion of intermediate computation rather than specialization of programs.

Holst and Launchbury suggested hand-writing of ‘cogen’ mainly as a way to overcome
the problem with double-encoding of subject programs at self-application time. They
studied a small ML-like language without references. The key observation made was that
the structure of an automatically generated compiler resembles that of a hand-written
compiler, and it therefore is a manageable task to write a compiler generator by hand.

Birkedal and Welinder have developed a generating extension generator for the Core
Standard ML language (without imperative constructs) [Birkedal and Welinder 1993].
Bondorf and Dussart have recently studied a CPS-cogen for an untyped lambda calculus.
Their work remains to be generalized to a more realistic context, though.

The author has succeeded in self-application of a partial evaluator for a subset of the
C language [Andersen 1991,Andersen 1993b]. We managed to generate ‘cogen’, and used
it to convert interpreters into compilers, and more broadly, programs into generating
extensions. Section 3.15 contains a detailed comparison with related work, and cites
relevant literature.

The present work extends previous work as follows. We develop partial evaluation
for the full Ansi C language; the present work allows specialization of larger programs
than previously possible, and we demonstrate that our techniques are feasible in practice.
Furthermore, the aim of the present work is different. Whereas previous work mainly
was concerned with self-application and compiler generation, the present work focusses
primarily on efficient specialization and its use in software development.

44

www.manaraa.com

input static

do stat stmt

gen dyn stmt

code gen calls

pending list

memory management

residual pgmreturn pgm

gen ext libary

generating extension

Figure 16: Structure of a generating extension

3.1.4 Overview of chapter

Knowledge of polyvariant program-point specialization and realization of these techniques
are assumed throughout the chapter [Gomard and Jones 1991a,Jones et al. 1993]. The
rest of the chapter is structured as follows.

The following section presents an example: transformation of a string-matcher into its
generating extension. The section serves to introduce basic concepts and notions used in
the later exposition.

Sections 3.3 to 3.8 contain a complete treatment of all aspects of the C program-
ming language. This part of the chapter is modeled over the book “the C programming
language” by Kernighan and Ritchie [Kernighan and Ritchie 1988]. We consider special-
ization of expressions, statements, functions, and the interaction between global variables
and side-effects. Further, we consider treatment of pointers, arrays and structs; define
the notion of partially-static data structure and specialization-time splitting of these, and
runtime memory allocation. These sections serve three purposes: they describe special-
ization of the various constructs; they introduce the corresponding transformations, and
they state the binding time separation requirements that a subject program must meet.
We do not consider binding-time analysis in this chapter; subject programs are assumed
to be annotated with binding times. Chapter 3.9 summarizes the transformation.

Section 3.10 investigates the memory management in a generating extension. Due to
pointers and side-effects the memory management is more involved than in for example
functional languages. Furthermore, storage usage is of major concern: specialization of
big programs may easily exhaust the memory unless care is taken. Section 3.12 describes
some strategies for function specialization, sharing and unfolding. Section 3.11 considers
code generation, and introduces an improvement that allows determination of (some)
dynamic tests.

Section 3.14 focusses on the termination problem. We argue that methods reported
in the literature are insufficient for realistic use.

Finally, Section 3.15 describes related work, and Section 3.16 lists related work and
concludes.

An refined picture of a generating extension is shown in Figure 16.

45

www.manaraa.com

/* Copyright (C) 1991, 1992 Free Software Foundation, Inc. */
/* Return the first occurrence of NEEDLE in HAYSTACK. */
char *strstr(char *haystack, char *needle)
{

register const char *const needle_end = strchr(needle,’\0’);
register const char *const haystack_end = strchr(haystack,’\0’);
register const size_t needle_len = needle_end - needle;
register const size_t needle_last = needle_len - 1;
register const char *begin;

if (needle_len == 0) return (char *) haystack; /* ANSI 4.11.5.7 */
if ((size_t) (haystack_end - haystack) < needle_len) return NULL;
for (begin = &haystack[needle_last]; begin < haystack_end; ++begin) {

register const char *n = &needle[needle_last];
register const char *h = begin;
do

if (*h != *n) goto loop; /* continue for loop */
while (--n >= needle && --h >= haystack);
return (char *)h;

loop:;
}

return NULL;
}

Figure 17: The GNU implementation of standard string function ‘strstr()’

3.2 Case study: A generating string-matcher

The aim of this section is to illustrate the main principles by a case study: transformation
of a (naive) string-matcher program into its generating extension. The string-matcher
inputs a pattern and a string, and returns a pointer to the first occurrence of the pattern
in the string (and NULL otherwise). The generating extension takes a pattern, and yields
a specialized matcher that inputs a string. As subject program we use ‘strstr()’.

The speedup we obtain is not very impressive, but the example is simple enough
to convey how a generating extension works. Further, the specialized matchers are not
optimal: they contain redundant tests, and do not compare with for example Knuth,
Morris and Pratt (KMP) matchers [Knuth et al. 1977]. Recently specialization of string
matchers has become a popular test for comparing “strength” of program transformers
[Jones 1994]. We return to this problem in Chapter 10 where we consider the stronger
specialization technique driving, that allows propagation of context information. This
enables generating of efficient KMP matchers from naive string matchers.

3.2.1 The string-matcher strstr()

The GNU C library implementation of the strstr() function is shown in Figure 176

[Stallman 1991]. The string matcher is “naive” (but efficiently implemented).

6This code is copyrighted by the Free Software Foundation.

46

www.manaraa.com

char *strstr_1 (char *haystack)
{

char *haystack_end;
char *begin;
char *h;
haystack_end = strchr (haystack, ’\0’);
if ((int) haystack_end - haystack < 3) return 0;
begin = &haystack[2];

cmix_label4:
if (begin < haystack_end) {

h = begin;
if (*h-- != ’b’) {

++begin;
goto cmix_label4;

} else
if (*h-- != ’a’) {

++begin;
goto cmix_label4;

} else
if (*h-- != ’a’) {

++begin;
goto cmix_label4;

else
return (char *) h + 1;

}
} else

return 0;
}

Figure 18: Specialized version of ‘strstr()’ to "aab"

First, the lengths of the pattern ‘needle’ and the string ‘haystack’ are found via
the standard function ‘strchr()’. If the length of the pattern exceeds the length of the
string, no match is possible. Otherwise the pattern is searched for by a linear scan of the
string in the for loop.

Suppose that we examine DNA strings. It is likely that we look for the same pattern
among several strings. It may then pay off to specialize ‘strstr()’ with respect to a fixed
pattern, to obtain a more efficient matcher. In the following, ‘needle’ is static (known)
data, and ‘haystack’ is dynamic (unknown) input.

The goal is a specialized program as shown in Figure 18. The figure shows ‘strstr()’
specialized to the pattern ‘"aab"’.7 Input to the program is the string ‘hay stack’. The
pattern has been “coded” into the control; there is no testing on the ‘needle’ array.

3.2.2 Binding time separation

Consider the program text in Figure 17. When ‘haystack’ is classified dynamic, all vari-
ables depending on it must be classified dynamic as well. This means that ‘haystack end’,

7The program was generated automatically, henceforth the “awful” appearance.

47

www.manaraa.com

char *strstr(char *haystack, char *needle)
{

register const char *const needle_end = strchr(needle, ’\0’);
register const char *const haystack end = strchr(haystack, ’\0’);
register const size_t needle_len = needle_end - needle;
register const size_t needle_last = needle_len - 1;
register const char *begin;
if (needle_len == 0) return (char *) haystack; /* ANSI 4.11.5.7 */
if ((size t) (haystack end - haystack) < needle_len) return NULL;
for (begin = &haystack[needle_last]; begin < haystack end; ++begin) {

register const char *n = &needle[needle_last];
register const char *h = begin;
do

if (*h-- != *n) goto loop; /* continue for loop */
while (--n >= needle);
return (char *)h+1;

loop:;
}

return NULL;
}

Figure 19: Binding-time separated version of ‘strstr()’

‘begin’ and ‘h’ become dynamic. On the other hand, ‘needle len’ and ‘needle last’
are static. A separation of variables into static and dynamic is called a division. The
classification of ‘haystack’ and ‘needle’ is the initial division.

In Figure 19 dynamic variables, expressions and statements are underlined.

A minor change has been made for the sake of presentation: the conjunct ‘--h >=

haystack’ has been eliminated from the do-while loop. It is easy to see that the modified
program computes same function as the original. The change is necessary to prevent the
loop from becoming dynamic. In Section 3.11 we describe an extension which renders this
binding time improvement unnecessary.

The for loop and the if statement are dynamic since the tests are dynamic. A
function must return its value at runtime, not at specialization time, hence the return

statements are classified dynamic, including the ‘return NULL’.

3.2.3 The generating extension strstr-gen()

The generating extension shall output a specialized version of ‘strstr()’ with respect to
‘needle’. Intuitively, this is accomplished as follows.

Suppose that the program in Figure 19 is “executed”. Non-underlined (static) con-
structs are be executed as normally, e.g. the do-while loop iterated and ‘--n’ evaluated.
When an underlined (dynamic) construct is encountered, imagine that the statement is
added to the residual program, which is being constructed incrementally. When the “ex-
ecution” terminates, the residual program will contain specialized versions of all those
statements that could not be executed statically. Due to loops, a statement may get
specialized several times, e.g. the if test can be recognized several times in Figure 18.

48

www.manaraa.com

The type Code. To represent dynamic variables we introduce a reserved type ‘Code’
in generating extensions. For instance, the definition ‘Code haystack’ represents the
dynamic pointer ‘haystack’. Variables of type ‘Code’ must appear in the residual pro-
gram. In this case, ‘haystack end’, ‘begin’ and ‘h’ will appear in specialized versions of
‘strstr()’, as expected.

Residual code and code generating functions. During the execution of a generating
extension, residual code is generated. We assume a library of code generating functions
that add residual statements to the residual program. For example, ‘cmixExpr(e)’ adds
an expression statement e to the residual program, and ‘cmixIf(e,m,n)’ adds ‘if (e)
goto m; else goto n’.

Similarly, we assume code generating functions for expressions. For example, the
function ‘cmixBinary(e1,"+",e2)’ returns the representation of a binary addition, where
e1 and e2 are representations of the arguments. The function ‘cmixInt()’ converts an
integer value to a syntactic constant.

Transformation of non-branching statements. Consider first the expression state-
ment ‘begin = &haystack[needle last]’. Recall that ‘begin’ and ‘haystack’ are dy-
namic while ‘needle last’ is static. The result of the transformation is

cmixAssign(begin,"=",cmixAddress(cmixArray(haystack,cmixInt(needle last))))

where ‘cmixInt()’ “lifts” the static value of ‘needle last’ to a syntactic constant.
Consider the dynamic statement ‘return (char *)h+1’. The transformed version is:

cmixReturn(cmixCast("char *", cmixBinary(h,"+",cmixInt(1)))); goto cmixPendLoop;

where ‘cmixPendLoop’ is a (not yet specified) label.
First, a residual return statement is added to the residual program by the means of

‘cmixReturn()’. Since a return terminates a control-flow path, there is nothing more to
specialize. The ‘goto’ statement transfers control to the pending loop (see below).

Transformation of branching statements. If the test of an if or a loop is static, it
can be determined at specialization time. Consider the do S while (--n >= needle)

in the subject program (Figure 19). Since ‘n’ and ‘needle’ are static, the loop is static,
and can be unrolled during specialization. The loop is henceforth transformed into do S
while (--n >= needle) in the generating extension, where S is the transformation of
S.

Consider specialization of the dynamic conditional ‘if (*h!=*n) goto loop;’. Sim-
ilarly to a compiler that must generate code for both branches of an if, we must arrange
for both branches to be specialized. Since only one branch can be specialized at a time,
we introduce a pending list of program points pending to be specialized. Let the library
function ‘cmixPendinsert()’ insert the “label” of a program point to be specialized.

The conditional is transformed as follows:

cmixIf(e,cmixPendinsert(m), cmixPendinsert(n)),

49

www.manaraa.com

where the m is the label of ‘goto loop’ (inserted during the transformation), and n is the
label of the (empty) statement after the if (more generally, the label of the else branch),
and e is the transformation of the test.8 After the then-branch, a jump ‘goto end if’ is
inserted, where ‘end if’ is the label of the statement following the if.

We implicitly convert a loop with a dynamic test into an if-goto.

The pending loop. The pending loop in a generating extension is responsible to ensure
that all program points inserted into the pending list are specialized. While program
points are pending for specialization, one is taken out and marked “processed”, and the
corresponding statements in pgen are executed.

Code strstr_gen(char *needle)
{

...
int cmixPP;
cmixPendinsert(1);
while (cmixPP = cmixPending()) {

cmixLabel(cmixPP);
switch (cmixPP) {

case 1: /* Program point 1 */
...
case n: /* Program point n */
cmixPendLoop:;
}

}
return;

}
To initiate the specialization, the label of the first statement is inserted into the list.

We have left out one aspect: a program point shall be specialized with respect to the
values the static variables assumed when the label was inserted into the pending list. For
now we simply assume that ‘cmixPending()’ (somehow) records this information, and
restores the values of the static variables.

Example 3.1 Consider the following (contrived) version of sign, and assume that it is
specialized with respect to a dynamic value ‘x’.

/* sign: return sign of v */
int sign(int x)
{

int v = 0;
if (x >= 0) v += 1; else v -= 1;
return v;

}
Suppose that the then-branch is specialized first. During this, the value of ‘v’ will be
updated to 1. Eventually, the else-branch is specialized. Before this, however, the static
variable ‘v’ must be restored to 0, which was its value when the else-branch was recorded
for specialization. End of Example

8In this example we courageously rely on left-to-right evaluation order.

50

www.manaraa.com

Code strstr(char *needle)
{

register const char *const needle_end = strchr(needle,’\0’);
register const size_t needle_len = needle_end - needle;
register const size_t needle_last = needle_len - 1;
Code haystack, haystack_end, begin;
int cmixPP;
cmixPendinsert(1);
while (cmixPP = cmixPending()) {

cmixLabel(cmixPP);
switch(cmixPP) {

case 1: cmixExpr(haystack_end = strchr(haystack, ’\0’));
if (needle_len == 0)

{ cmixReturn((char *)haystack); goto cmixPendLoop; }
cmixIf((size_t) (haystack_end - haystack) < needle_len,

cmixPendinsert(2),
cmixPendinsert(3));

goto cmixPendLoop;
case 2: cmixReturn(cmixInt(NULL)); goto cmixPendLoop;
case 3: cmixExpr(begin = &haystack[needle_last]);

for_loop: cmixIf(begin < haystack_end;
cmixPendinsert(4),
cmixPendinsert(9));

goto cmixPendLoop;
case 4: register char *n = &needle[needle_last];

cmixExpr(h = begin);
do {

cmixIf(*h-- != cmixLift(*n),
cmixPendinsert(8),
cmixPendinsert(5)));

goto cmixPendLoop;
end_if: cmixExpr(--h);

}
while (--n >= needle);
cmixReturn((char *)h+1);
goto cmixPendLoop;

case 5: goto end_if;
case 6: cmixReturn ((char *)h);

goto cmixPendLoop;
case 8: goto loop;
case 7: loop: cmixExpr(begin++);

goto for_loop;
case 9: cmixReturn(cmixInt(NULL));

goto cmixPendLoop;
cmixPendLoop:;

}
}
return name of function;

}

Figure 20: The generating extension of ‘strstr’

51

www.manaraa.com

In practice, static values must be copied when a label is inserted into the pending list,
and restored when the label is taken out via ‘cmixPending()’. A program point and the
values of the static variables are called a partial state.

The generating extension transformation. The transformation of ‘strstr()’ into
its generating extension can be summarized as follows.

1. Change the type of dynamic variables to ‘Code’.

2. Copy static expressions and statements to the generating extension.

3. Replace dynamic expressions and statements by calls to code generating functions.

4. Insert the pending loop.

The result, the generating extension of ‘strstr()’, is shown in Figure 20. Due to lack of
space we have not shown calls that generate code for expressions.9

3.2.4 Specializing ‘strstr()’

Execution of the generating extension on the input pattern ‘"aab"’ yields the residual
program shown in Figure 18.10 Some benchmarks are provided in the table below. All the
experiments were conducted on a Sun SparcStation II with 64 Mbytes memory, compiled
using the Gnu C with the ‘-O2 option’. Each match was performed 1,000,000 times.

Input Runtime (sec)
Pattern String Original Specialized Speedup

aab aab 4.2 2.5 1.6
aab aaaaaaaaab 8.5 5.7 1.4
aab aaaaaaaaaa 7.9 5.6 1.4
abcabcacab babcbabcabcaabcabcabcacabc 22.4 15.5 1.4

3.3 Types, operators, and expressions

In this and the following sections we describe binding time separation and transformation
of the various aspects of the C programming language. The sections also serve to introduce
the code generating functions, that the generating-extension library must implement. In
this section we consider simple expressions and base type variables.

The generating extension is a C program manipulating program fragments. We assume
a type ‘Expr’ suitable for representation of expressions.

9The program shown is not as generated by C-Mix, but adapted to fit the presentation in this section.
10We have by hand “beautified” the program.

52

www.manaraa.com

3.3.1 Constants

The C language supports three kinds of constants: base type constants, string constants,
and enumeration constants. A constant is static. To build a syntactic expression cor-
responding to a constant value, so-called lift functions are employed. A lift function
builds the syntactic representation of a value. For example, ‘cmixInt(int n)’ returns
the representation of the integer constant n, and ‘cmixString(char *s)’ returns the rep-
resentation of the string s. The function ‘cmixEnum(char *n)’ returns the representation
of the named enumeration constant n.11

Example 3.2 Consider the ‘pow()’ function below and assume that ‘base’ is static and
‘x’ is dynamic.

int pow(int base, int x)
{

int p = 1;
while (base--) p = p * x;
return p;

}

The variable ‘pow’ is assigned the value of ‘x’, and is therefore dynamic. The constant 1
appears in a dynamic context, and henceforth a lift is needed in the generating extension:
‘cmixAssign(p,cmixInt(1))’. End of Example

To avoid code duplication, the use of ‘cmixString()’ is restricted to string constants.
That is, arbitrary character arrays cannot be lifted.

3.3.2 Data types and declarations

We impose a uniform (program-point insensitive) monovariant binding-time division on
variables. Variables with definitely specialization-time known values are called static,
others are called dynamic. In later sections we introduce partially-static variables.

During specialization, a static variable holds a value and a dynamic variable holds
a symbolic address. In the generating extension, static variables are defined as in the
subject program, and dynamic variables are defined to have the reserved type ‘Code’. In
Section 3.6 we argue why it is convenient to let dynamic variables contain their symbolic
addresses in the residual program.12 A variable’s symbolic address corresponds to its
residual name.

Example 3.3 Consider again the ‘pow()’ function defined in Example 3.2. In the gener-
ating extension, the static parameter is defined by ‘int base’, and the dynamic variables
by ‘Code x’ and ‘Code p’, respectively.13 End of Example

11Currently, enumerations are implicitly converted to integers when needed. However, the revision of
the Standard is likely require strong typing for enumeration constants.

12The obvious alternative would be to have a function such as ‘cmixVar(”x”)’ to generate a residual
variable reference.

13Dynamic variables must also be initialized, i.e. Code p = cmixVar(”p”).

53

www.manaraa.com

The functions ‘cmixPar(char *type,Expr var)’ and ‘cmixLocal(char *type,Expr

var)’ produce residual parameters and variable definitions.

Example 3.4 The two calls: ‘cmixPar("int",x)’ and ‘cmixLocal("int",p)’ define the
dynamic variables in the residual program of ‘pow()’. End of Example

The type of a dynamic variable can be deduced from the subject program.

3.3.3 Operators

The set of operators can be divided into four groups: unary, binary, assignment, and
special operators. We consider each group in turn below.

The set of unary operators includes +, -, and !. A unary operator application can be
performed at specialization time provided the argument is static. Otherwise the applica-
tion must be suspended. The library function ‘cmixUnary(char *op,Expr arg)’ builds
a residual application. The representation of a binary operator application is returned by
‘cmixBinary(Expr e1,char *op,Expr e2)’. A binary operator can be applied at spe-
cialization time if both arguments are static. Otherwise it must be deferred to runtime.

Example 3.5 The call ‘cmixUnary("-",cmixInt(1)) produces the representation of
‘-1’. The expression ‘p * x’ is transformed into ‘cmixBinary(p,"*",x)’, cf. Example 3.2.
End of Example

When a dynamic operator application is transformed, it must be checked whether one of
the argument is static. In that case it must be surrounded by a lift function.

Assignment operators are considered below. The pointer dereference operator and the
address operator are treated in Section 3.6.

3.3.4 Type conversions

The type of a value can be converted implicitly or explicitly. An implicit conversion
happens, for example, when an integer value is passed as argument to a function expecting
a double. Since generating extensions are executed as ordinary programs and static values
are represented directly, no special action needs to be taken.

Explicit conversions, normally referred to as casts, change the type of an object to
a specified type. For example, ‘(char *)NULL’ changes the type of the constant 0 to a
pointer. Casts are divided into the categories portable and non-portable. The cast of 0 to
a pointer is a portable cast [ISO 1990, page 53]. The effect of non-portable casts is either
implementation-defined or undefined.

A cast between base types can be evaluated at specialization time provided the operand
is static. Thus, static casts are transformed unchanged into the generating extension.

Consider the following cases [ISO 1990, Paragraph 6.3.4]:

• Conversion of a pointer to an integral type:14 The conversion must be suspended
since an integral value can be lifted, and it when would become possible to lift
specialization-time addresses to runtime.

14The effect of the conversion is implementation-defined or undefined.

54

www.manaraa.com

• Conversion of an integer to a pointer type:15 This conversion must be suspended
since specialized programs otherwise could depend on the implementation that gen-
erated the program, i.e. the computer that executed the generating extension.

• Conversion of a pointer of one type to a pointer of another type.16 Since alignments
in general are implementation-defined, the conversion must be suspended to runtime.

• Conversion of function pointers.17 The cast can be performed at specialization time
provided the pointer is static.

Residual casts are build via ‘cmixCast(char *type,Expr e)’.

Example 3.6 Given the definitions ‘int x, *p’. The cast in ‘x = (int)p’ must be
suspended, since a pointer is converted to an integral value. The cast in ‘p = (int

*)x’ must be suspended, since an integral value is converted to a pointer. The call
‘cmixCast("char *",cmixInt(0))’ casts 0 to a character pointer. End of Example

3.3.5 Assignment operators

The set of assignment operators includes ‘=’ and the compound assignments, e.g. ‘+=’.
An assignment can be performed during specialization if both the arguments are static.
Otherwise it must be suspended. Possibly, a lift function must be applied to a static right
hand side subexpression. The library function ‘cmixAssign(Expr e1,char *op,Expr

e2)’ generates a residual assignment.

Example 3.7 The call ‘cmixAssign(p,"*=",x)’ produces a residual assignment, cf. Ex-
ample 3.2. End of Example

The C language supports assignment of struct values, for example, given the definitions

struct { int x, y; } s, t;

the assignment ‘s = t’ simultaneously assigns the fields ‘x’ and ‘y’ of ‘s’ the value of
‘t’. Suppose that the member ‘x’ is static and member ‘y’ is dynamic. An assignment
between objects with mixed binding times is called a partially-static assignment. Ideally,
the assignment between the ‘x’ members should be performed at specialization time, and
code generated for the ‘y’ member.

In the generating extension, however, an assignment cannot both be evaluated (static)
and cause code to be generated (dynamic). To solve the conflict, the struct assignment
can be split into a static and a dynamic part.

15The result is implementation-defined.
16The result depends on the object to which the pointer points. A pointer to an object of a given

alignment may be converted to an object of the same alignment and back, and the result shall compare
equal to the original pointer.

17A pointer of function type may be converted to another function pointer and back again, and the
result shall compare equal to the original pointer.

55

www.manaraa.com

Example 3.8 Let the definitions ‘struct S { int x, a[10], y; } s, t’ be given,
and assume that the members ‘x’ and ‘a’ are static while ‘y’ is dynamic. The assign-
ment ‘s = t’ can then be transformed into the three lines:

s.x = s.y;
memcpy(s.a, t.a, sizeof(s.a));
cmixAssign(s.y, t.y);

where the ‘memcpy()’ function copies the entries of the array.18 End of Example

The splitting of struct assignments into separate assignments potentially represents
an execution overhead since a compiler may generate an efficient struct assignment, e.g.
via block copy. At least in the case of the Gnu C compiler on the Suns, this is not the
case.19 Our thesis is that the gain will outweigh the loss.

3.3.6 Conditional expressions

For simplicity conditional expressions ‘e1? e2 : e3’ are transformed into conditional
statements, cf. Chapter 2. This way, evaluation of irreconcilable expressions is avoided,
e.g. if e2 and e3 contain assignments.

3.3.7 Precedence and order of evaluation

The standard specifies an evaluation order for some operators, e.g. the ‘comma’ operator.
Since a generating extension is executed in a conforming implementation, precedence rules
are automatically obeyed.

Execution of a generating extension on a particular implementation fixes the order of
evaluation. Since conforming programs are not allowed to rely on evaluation order, this
represents no problem, though.

Example 3.9 The evaluation order in the assignment ‘a[i] = i++’ is not specified, that
is, it is not defined whether ‘i’ will be incremented before or after the index is evaluated.
When the generating extension and the specialized program is executed on the same
platform as the original program, the behavior will be the same. End of Example

3.3.8 Expression statements

An expression can act as a statement. If the expression is static, it is transferred un-
changed to the generating extension, for evaluation during specialization. Code for dy-
namic expressions must be added to the residual program under construction. For this,
the function ‘cmixExpr(Expr)’ is used. It takes the representation of an expression and
adds an expression statement to the residual function. That is, the transformation is

e;
gegen
=⇒ cmixExpr(e);

where e is the transformation of e.
18The (impossible) assignment ‘s.a = t.a’ would change the semantics of the program.
19At the time of writing, we have not implemented partially-static assignments in the C-Mix system.

56

www.manaraa.com

3.4 Control flow

We employ a variant of depth-first polyvariant program-point specialization for special-
ization of statements and control flow [Jones et al. 1993]. This section first presents the
so-called pending loop, which controls the specialization of program points to static values,
and next the generating-extension transformation of the various statement kinds.

We assume that all local variable definitions have function scope, cf. Chapter 2. This
simplifies the memory management in a generating extension. Consider for example
jumps into a block with dynamic variables. Thus, only two scopes exist: global scope and
function scope. Due to pointers, objects lexically out of scope may be accessible.

The set of static (visible) objects at a program point is called the static store. During
execution of a generating extension, several static stores may exist in parallel. For exam-
ple, since both branches of a dynamic if must be specialized, the generating extension
must execute both the then- and the else branch. The else-branch must be specialized to
the (static) values valid when the test expression was reduced — not the values resulting
from specialization of the then branch (assuming the then branch is specialized before the
else branch), so the values must be copied.

The static store in which computations are carried on, is called the active store.

3.4.1 The pending loop

A generating extension uses a pending list to represent the set of program points remaining
to be specialized with respect to a static store. The list contains quadruples of the form
〈l, S, l′, f〉, where l is the label of the program point to be specialized (i.e. a program
label), S is a static store (i.e. a “copy” of the values of the static variables), and l′ is the
label of the residual program point (i.e. generated when the label was inserted into the
list). The flag f indicates whether an entry has been processed.

The following operations on the pending list are needed: insertion, test for exhaustion
of pending program points, and a way of restoring the values of static variables from a
static store.

• The function ‘cmixPendinsert(Label l)’ inserts label l into the pending list. As
a side-effect it makes a copy of the active store. If the label and a “similar” static
store already exist in the pending list, the residual label associated with that entry
is returned, and the program point is not inserted. This implements sharing of
residual code. Copying of the active store is the subject of Section 3.10.

• The function ‘cmixPending()’ checks whether any program points remain to be
processed, and selects one in the affirmative case. Otherwise it returns 0.

• The function ‘cmixPendRestore(Label l)’ restores the static store associated with
the selected entry and, marks it “processed”. The (text of the) residual label is
returned.

For simplicity we shall assume that the address of a label can be computed by ‘&&l’,

57

www.manaraa.com

and that “computed goto” is available, e.g. ‘goto *l’.20 The pending loop can easily be
expressed via a switch statement as in Section 3.2, if desired. The pending loop in a
generating extension is sketched as Algorithm 3.1.

Algorithm 3.1 The pending loop.

cmixPendinsert(&&first_label);
cmixPendLoop:

if (pp = cmixPending()) { /* Process next program point */
npp = cmixPendRestore(pp); /* Restore state */
cmixLabel(npp); /* Generate residual label */
goto *pp; /* Jump to program point */

}
else /* Nothing more to do */

return fun name; /* Return name */
/* Generating extension for body */

first_label:

The label ‘first label’ is assumed to be unique (introduced during transformation). 2

While any un-processed program points remain in the list, one is selected. The address
of the corresponding program point is assigned to the variable ‘pp’. Next, the active store
is restored with respect to the static store associated with the selected entry. A residual
label is added to the residual program by the means of the ‘cmixLabel(Label)’ call.
Finally, control is transferred to the program point to be specialized, via ‘goto *pp’.
Assuming pp = 〈l, S, l.′, f〉, the effect is to branch to the part of pgen that will generate
code for the part of p beginning at statement labeled l.

When all program points have been processed, the name of the (now completed)
residual function is returned.

3.4.2 If-else

The transformation of an if statement is determined by the binding time of the test.
If the test is static, the branch can be performed at specialization time. A static if is
transformed into an if in the generating extension. Otherwise a residual if statement
must be added to the residual program, and both branches specialized.

Let the statement following an if be S3, and consider ‘if (e) S1 else S2; S3’.
What should the residual code of these statements look like? Two possibilities exist: S3

can be unfolded into the branches, or the control flow can be joined at the specialized
version of S3.

Example 3.10 Two residual versions of ‘if (e) S1 else S2; S3’.

/* unfolding */ /* joining */
if (e) if (e)

S′1; S′3; S′1;
else else

20These operations are supported by the Gnu C compiler.

58

www.manaraa.com

S′2; S′′3 ; S′2;
S′3;

To the left, S3 has been unfolded into the branches (and specialized), to the right, the
control flow joins at (the specialized version of) S3. End of Example

The former gives better exploitation of static values, but the latter gives less residual
code. Suppose, however, that S1 and S2 contain conflicting assignments, e.g. S1 assigns
-1 to ‘x’ and S2 assigns 1 to ‘x’. This implies that the control flow cannot be jointed at a
single statement.

On-line partial evaluators can side-step the problem by suspending conflicting variables
by insertion of so-called explicators for disagreeing variables. An explicator lifts a variable
to runtime [Barzdin 1988,Meyer 1991]. This technique is unsuitable for off-line partial
evaluation, though, since the set of variables to be lifted cannot be determined at binding-
time analysis time.

We use a compromise where S3 is shared if the static stores resulting from specialization
of S1 and S2 are “similar”. The transformation of a dynamic if is illustrated by the
following example.

Example 3.11 The following program fragment is from a binary-search procedure.

if (x < v[mid]) high = mid - 1;
else if (x > v[mid]) low = mid + 1;
else return mid;

Suppose that ‘v’ is static but ‘x’ is dynamic, and hence the if must be specialized. The
transformed code is as follows.

cmix_test = x < v[mid];
cmixIf(cmix_test,cmixPendinsert(&&l0),cmixPendinsert(&&l1));
goto cmixPendLoop;

l0: /* first then branch */
high = mid - 1;
cmixGoto(cmixPendinsert(&&l2)); goto cmixPendLoop;

l1: /* first else branch */
cmix_test = x > v[mid];
cmixIf(cmix_test,cmixPendinsert(&&l3),cmixPendinsert(&&l4));
goto cmixPendLoop;

l3: /* second then branch */
low = mid + 1;
cmixGoto(cmixPendinsert(&&l5)); goto cmixPendLoop;

l4: /* second else branch */
cmixReturn(cmixLift(mid));
goto cmixPendLoop;

l2: l5:

The variable ‘cmix test’ is assigned the if-expression to ensure that all side-effects have
completed before the active store is copied via ‘cmixPendinsert()’.21

When executed, code of the form

21Recall that the evaluation order of arguments is unspecified.

59

www.manaraa.com

if (x < 5)
if (x > 5)

...
else return 2;

is generated. End of Example

The transformation is recapitulated below.

cmix_test = e;
if (e) cmixIf(cmix_test,cmixPendinsert(&&m),cmixPendinsert(&&n));

goto cmixPendLoop;

Sm;
gegen
=⇒ m: S1;

cmixGoto(cmixPendinsert(&&l));
else goto cmixPendLoop;

Sn; n: S2;
cmixGoto(cmixPendinsert(&&l));
goto cmixPendLoop;

l:;

The statement following the ‘if’ is made a specialization point (l). Hence, it will be
shared if the static stores valid at the end of the two branches agree.

The function ‘cmixIf(Expr e,Label m,Label n)’ adds a residual statement ‘if (e)
goto m; else goto n’ to the current residual function. The function ‘cmixGoto(Label
l)’ adds a residual goto.

3.4.3 Switch

The treatment of a switch statement depends on the expression. A static switch can be
executed during specialization, and is thus copied into the generating extension. In the
case of a dynamic switch, all case entries must be specialized. The transformation is
shown below.

cmix_test = e;
switch (e) { cmixIf(cmixBinary(cmix_test,"==",v 1,

case v 1: S1 cmixPendinsert(&&l1),
cmixPendinsert(&&l)));

goto cmixPendLoop;

case v 2: S2
gegen
=⇒ l:cmixIf(cmixBinary(cmix_test,"==",v 2,

cmixPendinsert(&&l2),
cmixPendinsert(&&m));

goto cmixPendLoop;
... m: ...
default: Sn n:cmixGoto(&&ln);

goto cmixPendLoop;
l1: S1;
l2: S2;

...
} ln: Sn;

60

www.manaraa.com

Observe that the residual code generated due to the above transformation correctly im-
plements cases that “fall through”.22

Example 3.12 Dynamic switch statements are candidate for “The Trick” transforma-
tion: statically bounded variation [Jones et al. 1993]. The point is that in a branch
case vi: Si the switch expression is known to assume the value vi, even though it
is dynamic. In the terminology of driving, this is called positive context propagation
[Glück and Klimov 1993]. We consider this in Chapter 10. End of Example

3.4.4 Loops — while, do and for

Static loops can be iterated (unrolled) during specialization. Consider dynamic loops, i.e.
loops with a dynamic test.

A for loop corresponds to a while loop with an initialization and step expression
[Kernighan and Ritchie 1988, Reference manual]. A do loop is similar to while. It suffices
to consider while loops. The transformation is given below.

l: /* the loop test */
if_test = e;

while (e) cmixIf(if_test,
cmixPendinsert(&&m),

gegen
=⇒ cmixPendinsert(&&n));

goto cmixPendList;
S; m: S;

cmixGoto(cmixPendinsert(l)); /* iterate */
goto cmixPendLoop;

n: /* end of loop */

Notice that the back-jump is specialized, (potentially) giving better sharing of residual
code.

Example 3.13 A tempting idea is to introduce a residual while. However, this requires
all assignments in a while-body to be suspended, which is excessively conservative in many
cases. Structured loops can be re-introduced into residual programs by post-processing.
[Ammerguellat 1992,Baker 1977]. End of Example

Example 3.14 Below a version of the standard library function ‘strcmp()’23 is shown.
We specialize it with respect to ‘s = "A"’ and dynamic ‘t’.

/* strcmp: return < 0 if s < t,0 if s==t,> 0 if s > t */
int strcmp(char *s, char *t)
{

for (; *s == *t; s++, t++)
if (*s == ’\0’) return 0;

return *s - *t;
}

22We assume that ‘break’ and ‘continue’ statements are pre-transformed into goto.
23Kernighan & Ritchie page 106 [Kernighan and Ritchie 1988].

61

www.manaraa.com

Code strcmp(char *s)
{

/* pending loop omitted */
l: if_test = cmixBinary(cmixChar(*s), "==", cmixIndr(t));

cmixIf(cmixPendinsert(&&m),cmixPendinsert(&&n));
goto cmixPendLoop;

m: if (*s == ’\0’)
{ cmixReturn (cmixInt(0)); goto cmixPendLoop; }
cmixExpr(cmixPost(t, "--"));
cmixGoto(cmixPendinsert(&&l); goto cmixPendLoop;

n: cmixReturn(cmixBinary(cmixChar(*s), "-", cmixIndr(t)));
goto cmixPendLoop;

}

Figure 21: Generating extension for ‘strcmp()’

The generating extension is shown in Figure 21, and a residual program below, for ‘s =

"a"’.

int strcmp_s(char *t)
{

if (’a’ == *t)
{ t++; if (’\0) == *t) return 0; else return ’\0’ - *t; }

else return ’A’ - *t;
}

Transformation of while into ‘cmixWhile(e,S)’ would result in monovariant specializa-
tion, and hence that the assignment ‘s++’ would have to be suspended. End of Example

It is possible to improve the sharing of residual code slightly. Observe that a program
point only is specialized due to dynamic jumps, e.g. from a dynamic if. In general, the
if statement controlling a dynamic loop is rarely the target of a jump the first time the
“loop” is met. Thus, the label of the if will first be inserted into the pending list due
to the back-jump. This means the if will appear at least twice in the residual program.
This can be alleviated by forcing it to be a specialization point:

cmixGoto(cmixPendinsert(&&l));
goto cmixPendLoop;

l: if_test = e;
cmixIf(if_test,cmixPendinsert(&&m),cmixPendinsert(&&n));
goto cmixPendLoop;

m: ...
goto cmixPendLoop; n:

3.4.5 Goto and labels

The C language does not exhibit computed gotos so the target of a jump is always stat-
ically known. This implies a goto always can be performed during specialization (to the
labelled statement in the generating extension corresponding to the target of the jump in

62

www.manaraa.com

the subject program). Static execution of jumps without generating code is known as tran-
sition compression. Notice that transition compression only will cause non-termination
when the program contains a purely static loop.

It is convenient to specialize some gotos, e.g. in connection with loops. The library
function ‘cmixGoto(Label)’ generates a residual goto. The accompanying transforma-
tion:

goto m;
gegen
=⇒ cmixGoto(cmixPendinsert(&&m));

goto cmixPendLoop;

as seen many times before in the proceeding examples.

Example 3.15 Copying and restoring of static values may be expensive. In the case
of a dynamic goto, there is no need to restore the active store if specialization proceeds
immediately at the target statement, unless some residual code can be shared. The
transformation is changed into

cmixGoto(cmixPendinsert(&&m));
goto m;

gegen
=⇒ if (!cmixPendfound()) goto m;

else goto cmixPendLoop;

where ‘cmixPendfound()’ returns true if the previous call to ‘cmixPendinsert()’ shared
a residual program point. End of Example

3.5 Functions and program structure

When some arguments s to a function f are known, a specialized — and hopefully opti-
mized — version can be produced. This is the aim of function specialization. The subject
of this section is transformation of functions into generating functions. A generating func-
tion for f adds a specialized version fs to the residual program, and returns the name
of it. Furthermore, we study the impact of side-effects on residual function sharing and
unfolding. In the last part of the section we discuss the ‘extern’, ‘static’ and ‘register’
specifiers, and recursion.

3.5.1 Basics of function specialization

Let v1, . . . , vm be static arguments to f . A generating function fgen for f fulfills that if
[[fgen]](v1, . . . , vm) ⇒ fspec

pgm
then [[fspec]](vm+1, . . . , vn) ⇒ v, whenever [[f]](v1, . . . , vn) ⇒

v for all vm+1, . . . , vn. Besides parameters, functions may also use and modify non-local
variables.

Most C programs do not exhibit extensive use of global variables as other imperative
languages but, for instance, a global array is not rare. Restricting function specialization
to parameters only is likely to give poor results.

Constraint 3.1 Function specialization shall be with respect to both static parameters
and static global variables.

63

www.manaraa.com

Runtime heap-allocated objects can be seen as global (anonymous) data objects.

Example 3.16 The aim is to specialize function ‘S x()’ below.

struct S { int x; } *p;
int main(void) { p=(struct S*)malloc(sizeof(struct S)); return S_x(); }
int S_x(void) { return p->x; }

Clearly, ‘S x()’ must be specialized with respect to both global variable ‘p’ and the
indirection ‘p->x’. End of Example

Suppose that a generating function is called twice (during execution of the generat-
ing extension) with the “same” arguments. Seemingly, it is then possible to share the
specialized function (generated due to the first call), and simply let the second invoca-
tion do nothing but return the name of that function. For now we assume a predicate
‘seenB4(FunId)’ returns true if a call can be shared. Section 3.12 outlines a strategy
for function sharing. In the context of fold/unfold transformations, sharing is known as
function folding [Burstall and Darlington 1977].

The structure of a generating function is given below.

Algorithm 3.2 Generating function for f

Code fun(static arguments)
{

if (seenB4(f))
return FunName(f); /* Share */

/* Otherwise specialize */
push_fun(f); /* New res. fun. */
/* Pending loop */ /* Specialize body of f */

/* Nothing more to do */
return pop_fun();

/* Generating statements */
...

}

See also Algorithm 3.1. 2

First, the generating function checks whether it has been invoked in a similar context
before. In the affirmative case, the name of the shared function is returned immediately
to the caller, and no new residual function is constructed. Otherwise a residual function
is constructed.

Residual functions are generated in parallel to calls in the generating extension. When
a generating function is called, a new residual function is built, and code generation re-
sumes in the previous residual function when the generating function returns. We imple-
ment this by a residual function stack. When a new residual function is to be constructed,
its name is pushed onto the stack by ‘push fun(f)’. When the specialization has com-
pleted, it is popped by the means of ‘pop fun()’. The code generating functions, e.g.
‘cmixExpr()’ add code to the residual function currently on top of the residual function
stack.

64

www.manaraa.com

3.5.2 Functions and side-effects

The following program implements a stack and the ‘push()’ function.

int stack[MAX_STACK], sp = -1;
/* push: push val on top of stack */
void push(int val)
{

if (sp < MAX_STACK)
stack[++sp] = val;

else
fprintf(stderr, "Stack overflow\n");

}

Suppose that the contents of the stack is dynamic, but the stack pointer is static.
By specialization of ‘push()’ with respect to a particular value of ‘sp’, a function that
inserts a value at a specific location in the stack is produced. For example, the version of
‘push()’ specialized with respect to ‘sp = 3’, assigns its argument to ‘stack[4]’. Notice
that after the specialization, the (static) value of ‘sp’ is 4.

Suppose a second call to ‘push()’ with ‘sp = 3’. Apparently, the call can be shared
since the call signature matches the previous invocation. Doing this prevents the value of
‘sp’ to be updated — which is wrong (unless ‘sp’ is dead).

The extreme solutions are to prohibit static side-effects or to disallow sharing of func-
tions accomplishing static side-effects. The former is likely to degenerate specialization;
for instance, initialization of global data structures become suspended. The latter in-
creases the risk for non-termination. Section 3.12 presents a sharing strategy.

Example 3.17 A function with a call ‘malloc()’ performs a side-effect on the heap, and
can henceforth not be shared. End of Example

Consider now the following contrived function which performs static side-effect under
dynamic control.

/* pop zero: pop if top element is zero */
void pop_zero(void)
{

if (!stack[sp]) sp--;
return;

}

Since the test is dynamic, both branches must be specialized. One branch ends up in a
state where ‘sp’ is 2, the other leaves ‘sp’ unchanged.

/* pop zero 3: pop if stack[3] is zero */
void pop_zero_3(void)
{

if (!stack[3]) /* sp == 2 */ return;
/* sp == 3 */ return;

}

65

www.manaraa.com

The problem is that after the call to the generating function for ‘pop zero()’ , the value
of the static variable ‘sp’ is unknown (even though it must assume either 2 or 3). Its value
is first determined at runtime. However, during specialization, code generation resumes
from one point: at the statement following the call. Unlike the handling of dynamic if,
it is not feasible to “unfold” the subsequent statements “into” the branches.24 Naturally,
by unfolding of the side-effect function, the side-effect can be handled as in the case of
local side-effects.

Constraint 3.2 Side-effects under dynamic control shall be suspended.

Chapter 6 develops a side-effect analysis to detect side-effects under dynamic control.

3.5.3 Recursion and unfolding

Function specialization must proceed depth-first to preserve the execution order. Func-
tions may be recursive, so a call must be recorded as “seen” before the body is specialized,
cf. Algorithm 3.2. This does not guarantee termination. Termination properties are dis-
cussed in Section 3.14.

Partial evaluation tends to produce many small functions which obviously should be
unfolded (inlined) into the caller. Even though most modern compiler can perform in-
lining, it is desirable to do the inlining explicitly in the residual program. This often
enhances a compiler’s opportunity to perform optimizations [Davidson and Holler 1992].
A generating function of a function to be unfolded is shortly called an unfold-able gener-
ating function.25

Unfolding can either be done during specialization or as a postprocess. This section
solely describes unfolding during specialization, which can be accomplished as follows.

1. During execution of the generating extension, before a call to an unfold-able function
is made, residual code to assign dynamic actuals to the formal of the called function
is made.

2. In generating functions for unfold-able functions, the calls to ‘push fun()’ and
‘pop fun()’ are omitted, such that at specialization time, residual code is added to
the callee’s residual function.

3. Generating functions for an unfold-able function generate an assignment to a “re-
sult” variable and a jump to an “end” label, instead of a residual return.

The above procedure implements function unfolding on a function basis. Alternatively,
unfolding can be decided on a call-site basis. Since the structure of a generating function
depends heavily on whether it is unfold-able or not, we will not pursue this.

Example 3.18 Suppose function ‘pow()’ is unfolded into ‘main()’.

24In previous work we have described management of end-configuration for updating of the state when
sharing functions with side effect under dynamic control [Andersen 1991]. Experiments have revealed
that this is not a fruitful approach so we abandon it.

25Notice that it is the residual function that is unfolded — not the generating function!

66

www.manaraa.com

int main(void)
{

int exp, result; /* dynamic */
result = pow(2,exp);
return result;

}
The residual function has the following appearance.

int main(void)
{

int exp, result;
int x;
{

x = exp;
p = 1;
p *= x;
p *= x;
p *= x;
result = p;

}
return result;

} End of Example

Copy propagation can further optimize the code, but this can be done by most optimizing
compilers.

3.5.4 External variables

Most C programs consist of several translation units each implementing different parts
of the system. A module can refer to a global identifier (variable or function) defined in
other modules by the means of ‘extern’ declarations.26

References to externally defined variables must be suspended to runtime. Further,
since externally defined functions may side-effect variables in other modules, such calls
must also be suspended.

Constraint 3.3 References to externally defined identifiers shall be suspended.

In practice, this requirement is too strict. For example, mathematical functions such as
‘pow()’ are externally declared in <math.h>, and thus, not even purely static calls will
be computed at specialization time. In Section 3.8 we return to this, and introduce the
notion of pure function. Pure function calls can be evaluated statically.

Program specialization in the context of modules is the subject of Chapter 7. The
chapter also discusses the more dubious treatment of global variables. In C, a global
identifier is exported to other modules unless it is explicitly declared local by the means
of the static specifier. Thus, when looking at a module in isolation, all global variables,
in principle, have to be suspended. A dramatic consequence: no function specialization
will occur. For now we continue to assume that a translation unit makes up the (relevant
part of the) whole program, and suspend only externally defined identifiers.

26Most C compilers allow implicit declaration of functions returning integer values. We assume that
all external references are explicitly declared.

67

www.manaraa.com

3.5.5 Static variables

The storage specifier static has two meanings. When applied to a global identifier, the
identifier is given file scope. This has no impact on program specialization and can thus
be ignored — at least until Chapter 7, where we consider separate program specialization
of modules.

When a local variable is defined static, it is allocated statically, and lives between
function invocations. As argued in Chapter 2, static identifiers can be treated as unique
global identifiers.

3.5.6 Register variable

The register specifier is a hint to the compiler, and does not influence program special-
ization. The storage specifier is copied to the residual program.

3.5.7 Initialization

C allows initialization values to be provided as part of definitions. To simplyfy matters,
we rely on a pre-transformation that converts initializations into ordinary assignments.27

3.6 Pointers and arrays

The subject of this section is specialization of pointers and arrays. In early partial eval-
uators, data structures were classified either completely static or completely dynamic.
This resulted often in the need for manual binding-time engineering of programs, e.g. the
splitting of a list of pairs into two lists, to achieve good results. In this section we describe
binding-time classification and specialization of partially-static data structures, and the
interaction between functions and pointers. The next section deals with structures and
unions.

3.6.1 Pointers and addresses

A pointer is a variable containing an address or the constant NULL. Classify a pointer
static if its value and contents definitely are known at specialization time. Otherwise
classify it dynamic. Static pointers can be dereferenced during specialization; dynamic
pointers cannot.

Example 3.19 Consider ‘int x,y,a[2],*ip’ and assume that ‘x’ is static and ‘y’ is
dynamic. Pointer ‘ip’ is a static pointer to a static object in the assignment ‘ip = &x’.
It is a static pointer to a dynamic object in ‘ip = &y’. If e is a dynamic expression, the
assignment ‘ip = &a[e]’ forces ‘ip’ to be a dynamic pointer. End of Example

27There is no special reason for doing this, except that it simplifies the presentation.

68

www.manaraa.com

A static pointer to a dynamic object is a partially-static data structure. When referring
to static pointers to static objects it is explicitly written.

Recall that a dynamic variable is bound to its symbolic runtime address during spe-
cialization. For example, if ‘int x’ is a dynamic variable, it would be defined by ‘Code x’
in the generating extension, and be bound to ‘loc x ’, say. It appears in the residual pro-
gram as ‘int loc x’. For the sake of readability, assume that scalar (dynamic) variables
are bound to their own name.

Constraint 3.4 Dynamic variables shall be bound to their runtime address during spe-
cialization.

Consider specialization of the expressions ‘ip = &y; *ip = 2’ (where ‘ip’ is a static
pointer to a dynamic object). In the generating extension, this code appears as

ip = &y; cmixAssign(*ip, "=", cmixInt(2))

where ‘cmixInt()’ lift the static constant in the dynamic context. Operationally speak-
ing, first the static pointer ‘ip’ is assigned the address of the dynamic ‘y’. Next ‘ip’ is
dereferenced giving ‘y = 2’, as desired.

Example 3.20 Consider the following contrived inline version of swap, implemented via
pointers.

int x, y, *px = &x, *py = &y;
int temp;
/* swap */
temp = *px; *px = *py; *py = temp;

Suppose that ‘x’ and ‘y’ are dynamic. Specialization produces the following residual
program

int x, y;
int temp;
temp = x; x = y; y = temp;

where no pointer manipulations take place. End of Example

Additional conditions have to be imposed on the usage of the address operator at
specialization time when applied to arrays; this is described below.

3.6.2 Pointers and function arguments

Consider specialization of the ‘swap()’ function.28

/* swap: swap the content of px and py */
void (int *px, int *py)
{

int temp;
temp = *px, *px = *py, *py = temp;

}
28See Kernighan and Ritchie [Kernighan and Ritchie 1988, page 95].

69

www.manaraa.com

Suppose that ‘int a,b’ are dynamic variables and consider specialization due to the
call ‘swap(&a,&b)’. If the formal parameters are classified partially static, i.e. static
pointers to dynamic objects, the net effect of the dereferencing (in the body) will be that
the runtime addresses of ‘a’ and ‘b’ illegally are propagated into the (residual) body of
‘swap()’.

/* Illegal ‘‘residual” program for sway */
void swap_px_py()
{

int temp;
temp = a; a = b; b = temp;

}

To prevent this, specialization with respect to partially-static pointers is disallowed.

Constraint 3.5 Formal parameters of pointer type shall be completely static or com-
pletely dynamic.

It suffices to prohibit specialization with respect to pointers that point to non-local objects.
The pointer analysis developed in Chapter 4 can implement this improvement. Further-
more, if the indirection of a partially-static pointer is dead in the body, the pointer can
retain its status as static, see Section 3.10.

Example 3.21 Consider the following function that increments a pointer.

/* inc ptr: increment integer pointer by one */
int *inc_ptr(int *p)
{

return p + 1;
}

If ‘p’ is a partially-static pointer, the above requirement forces ‘p’ to be fully suspended.
Since ‘p’ not is dereferenced in the body of ‘inc ptr()’, it is permissible to classify the
function static. The point is that ‘*p’ is not used in the body, and that functions need
not be specialized to dead values, see Section 3.12. End of Example

3.6.3 Pointers and arrays

Suppose that ‘int a[N+1]’ is a statically indexed array of dynamic values.29 The array
can then be split into separate variables ‘int a 0’,. . . ,‘a N’ during specialization, the
objective being elimination of index calculations and a level of indirection.

Example 3.22 Suppose that a “polish calculator” uses a stack ‘int s[STACK]’ to carry
out the calculations. For example, the addition x + y is computed by the instructions
‘push(x); push(y); push(pop() + pop())’. If the stack is statically indexed, special-
ization with respect to the “program” produces the residual program: ‘s 0 = x, s 1 =

y, s 0 = s 0 + s 1‘, where ‘s 0’ is the symbolic address of ‘s[0]’ etc. End of Example

29Statically indexed means that all index expressions e in a[e] are static.

70

www.manaraa.com

Naturally, if the index into an array is dynamic, the array cannot be split. More precisely,
to split an array the following requirements must be fulfilled.

Constraint 3.6 An array ‘a’ can be split provided:

• all index expressions into ‘a’ are static, and

• no dynamic pointer may refer to ‘a’, and

• the array ‘a’ is not passed as actual argument to a function.

The conditions are justified as follows. An index expression ‘a[e]’ corresponds to ‘*(a
+ (e))’, and clearly the addition cannot be evaluated when e is dynamic. If a dynamic
pointer may reference an array, the array cannot be split since i) the entry to which the
pointer points may not be computable at specialization time and ii) the program may rely
on the array being allocated as a consecutive block of memory, e.g. use pointer arithmetic.
Finally, splitting an array passed as parameter to a function (or passing pointers to the
individual variables in the residual program) introduces a severe call overhead.

Example 3.23 Consider an application of the address operator ‘&a[3]’ where ‘a’ is an
array of dynamic elements. Even though ‘a[3]’ evaluates to a dynamic value, the applica-
tion can be classified static as the rewriting ‘&a[3]’ ≡ ‘a + 3’ shows. On the other hand,
in the case of a dynamic index e, ‘&a[e]’ cannot be evaluated statically. End of Example

Binding time classification and specialization of runtime allocated arrays are similar
to statically allocated arrays.

3.6.4 Address arithmetic

The C language allows a pointer to be assigned to another pointer, adding and sub-
tracting a pointer and an integer, subtracting or comparing two pointers to members of
the same array, and assigning and comparing to zero.30 The hard part is the binding
time separation. This is considered in Chapters 4 (pointer analysis) and 5 (binding-time
analysis).

Example 3.24 The ‘strcpy()’ function makes use of pointer arithmetic.

/* strcpy: copy t to s (K&R page 106) */
void strcpy(char *s, char *t)
{

while (*s++ = *t++) ;
}

Suppose that ‘s’ is dynamic and ‘t’ is static. The two increment operators then have to
be classified dynamic and static, respectively. The specialized program with respect to ‘t
= "ab"’ is shown below.

30Recall that pointer arithmetic only is allowed to shuffle a pointer around inside the same array, and
one past the last element.

71

www.manaraa.com

/* strcpy t: Copy ”ab” to s */
void strcpy_t(char *s)
{

*s++ = ’a’;
*s++ = ’b’;
*s++ = ’\0’;

}

Assessment: the usability of this is doubtful. In practice a “specialized” function of the
form

void strcpy_t(char *s)
{

char *b = "ab";
while (*a++ = *b++) ;

}

is preferable due to the reduced storage usage. End of Example

Binding time classification of the pointer versions of plus and minus differs from normal
in that they can be applied to partially-static pointers. For example, if ‘p’ is a static
pointer to a dynamic object, ‘p + 2’ can be classified static, since only the static part of
‘p’ is needed to evaluate the addition. See Chapter 5 for details.

3.6.5 Character pointers and functions

In Section 3.3.1 we defined lift functions for constants of base type and strings. An
example why it is useful to lift string constants is given below.

Example 3.25 The string function ‘strcmp(char *, char *)’ is an external function,
and must therefore be suspended if an argument is dynamic. The call ‘strcmp("ab",b)’,
where ‘b’ is dynamic, is transformed to ‘cmixECall("strcmp", cmixString("ab"), b)’,
where ‘cmixECall()’ returns a residual function call to ‘strcmp()’. End of Example

Lift of arbitrary character arrays is undesirable since it may duplicate data. Imagine for
example an editor representing the edited file as a string! Section 3.10 considers externally
allocated strings and string-functions.

3.6.6 Pointer arrays, pointers to pointers, multi-dimensional
arrays

So far we have only employed one-level pointers. The techniques carry over to multi-level
pointers without modification. For instance, a pointer ‘int **p’ might be classified to be
a static pointer to a static pointer to a dynamic object, and can hence be dereferenced
twice during specialization. Naturally, it makes no sense to classify a pointer as “dynamic
pointer to static pointer to dynamic objects”, since the objects to which a pointer points
must be present at runtime.

72

www.manaraa.com

3.6.7 Pointers to functions

C has flexible rules for assignment of function addresses to pointers. We assume the
standardized notation ‘fp = &f’ for assignment and ‘(*fp)()’ for call, whenever ‘f’ is a
function and ‘fp’ a pointer of a suitable type, see Chapter 2.

Specialization with respect to function pointers is similar to, but simpler, than spe-
cialization with respect to higher-order values in functional languages. It is simpler in
that C does not allow closures and partial function applications.

Consider a general application ‘(*fp)(e1,. . . ,en)’, and differentiate between the fol-
lowing three situations:

1. The pointer ‘fp’ is static, and hence points to a particular (generating-)function
during specialization.

2. The pointer ‘fp’ is dynamic, but is known to point to one of ‘{f1, . . . , fn}’.
3. The pointer ‘fp’ is dynamic, and only imperfect information about which functions

it points is available.

Consider each case in turn.
If the function pointer is static, it can be dereferenced and the corresponding gener-

ating function called.31 The call is transformed into

cmixICall((*fp)(e1,. . . ,em),em+1,. . . ,en)

where em+1,. . . , en are the dynamic arguments. Suppose that ‘fp’ points to ‘f’. The
residual call will then be ‘f res(e′m+1,. . . ,e

′
n)’.

A function pointer can (at most) point to all functions defined in the program.32

Typically, however, it will only point to a small set of those. By the means of a pointer
analysis the set of functions can be approximated. Assume that ‘fp’ is a dynamic pointer
and that it has been determined that it only can point to the functions ‘f1()’,. . . , ‘fn()’.
The idea is to specialize all the functions with respect to the static arguments, and defer
the decision of which (specialized) function to call to run-time.

Example 3.26 Let ‘fp’ be a function pointer, and ‘f1()’ and ‘f2()’ defined functions.

/* Example of dynamic function pointer */
fp = dyn-exp? &f1 : &f2;
x = (*fp)();

During the specialization, the addresses of the defined functions are replaced by unique
numbers assigned to ‘fp’. At the call site, a switch over the possible functions is gener-
ated.

31We ignore the case where the function is static.
32In this paragraph we consider a whole program; not a translation unit.

73

www.manaraa.com

/* Specialized example of dynamic function pointer */
fp = dyn-exp? 1 : 2;
switch (fp) {
case 1: x = f1_spec(); /* Specialized version of f1() */
case 2: x = f2_spec(); /* Specialized version of f2() */
}

Observe that the functions ‘f1()’ and ‘f2()’ usually will not appear in the residual
program, so ‘fp = &f1’ has no meaning. One function pointer assignment may cause
several different specialized function to be called. End of Example

Since the actual function executed at runtime is unknown at specialization time, the
potential functions may not perform any static side-effects.

Constraint 3.7 Functions (potentially) called via a function pointer shall not commit
any static side-effects.

Finally we consider the case where the set of functions a function pointer may point to
cannot be approximated. This can for example happen if the pointer is assigned entries
of an externally defined array of functions.33 The problem is that the function pointer
may point to both an “unknown” function and a user-defined function.

Example 3.27 Suppose that ‘int *cmp[]()’ is an array of function pointers and that
‘int f()’ is a defined function.

/* Example code with a function pointer */
fp = dyn-exp? cmp[exp] : &f;
x = (*fp)();

Using a type cast, the unique “label” for ‘f’ can be assigned ‘fp’.

/* Specialized example code */
fp = dyn-exp? cmp[exp] : (int (*)())1;
switch ((int)fp) {

case 1: x = f_spec(); /* Specialized version of f */
default: x = (*fp)(); /* Call unknown function */

}

The switch tests whether the pointer points to a user defined function, otherwise it calls
the “unknown” function. End of Example

Depending on the compiler, the switch may be converted to a jump-table during the final
compilation.

Specialization with respect to dynamic function pointers can be summarized as follows.
During execution of the generating extension:

1. expressions of the form ‘&f’, where ‘f’ is a defined function, are replaced by a unique
constant (e.g. the address of the function), where, however,

33We now consider a program to consist of several translation units, where some are subject for
specialization.

74

www.manaraa.com

2. references to unknown functions are left unchanged.

3. Calls ‘(*fp)()’ are specialized into a switch over the possible values of ‘fp’, see
Example 3.27.

The generating-extension transformation of an indirect call should be clear. Note that
even though the residual code is not strictly conforming to the Standard, it is conforming
[ISO 1990]. It is easy to see that it is actually portable.

The solution presented above is not optimal. It replaces an efficient construct (indirect
call) by a potentially more expensive construct (switch statement). Our thesis is that the
switch statements can be optimized by the compiler, and the gain obtain by specialization
outweigh the extra call overhead. In the following we shall not consider specialization of
function pointers with respect to both known and unknown functions.

3.7 Structures

A structure consists of one or more logically related variables which can be passed around
as an entity. Classification of structs into either completely static or completely dynamic
is likely to produce conservative results.

This section develops a more fine-grained binding-time assignment that allows auto-
matic splitting of partially-static structs. Further, we investigate runtime memory allo-
cation, and show how dynamic memory allocation can be replaced by static allocation.
Finally we discuss unions and bit-fields.

3.7.1 Basics of structures

A structure is a collection of variables called members. For example,

struct point { int x, y, z; } pt;

defines a struct (and a variable ‘pt’) useful for representation of coordinates.
A struct34 where some but not necessarily all members are dynamic, is called a

partially-static struct. We differentiate between the cases where the members of a struct
can be accessed at specialization time, and where this is not the case. The former are
called a static structs, the latter are said to be dynamic.

Constraint 3.8 The members of a dynamic struct shall all be dynamic.

A struct may for instance be classified dynamic if it is part of the unknown input to the
subject program,35 or it is returned by a function (see the next section). Notice that
we attribute the classification to struct definitions — not to variables.36 A struct index
operator ‘.’ applied to a static struct can be evaluated at specialization time. A dynamic

34In the following we are often sloppy and write a ‘struct’ for a ‘variable of structure type’, as is common
practice.

35Normally, it is undesirable to change the type of the dynamic input.
36Recall that type separation is performed on representations of programs, cf. Section 2.3.

75

www.manaraa.com

indexing e.i is transformed into ‘cmixStruct(e, i)’, where e is the transformation of
expression e.

The net effect is that static structs are split into separate variables, whereas the
indexing into dynamic structs is deferred to runtime. The objective of struct splitting is
elimination of a level of indirection and offset calculation.

Example 3.28 Suppose that ‘struct point’ is a static struct where ‘x’ is dynamic, and
‘y’ and ‘z’ are dynamic. Consider the following code:

struct point pt; /* static struct SxDxD */
pt.x = 2; /* assignment to static member */
pt.y = 3; /* assignment to dynamic member */

Specialization yields the following lines of code.

int pt_y, pt_z; /* the dynamic members of pt */
pt_y = 3; /* assignment to dynamic member */

The struct variable ‘pt’ has been split into the residual variable ‘pt y’ and ‘pt z’, both
of type integer. End of Example

Dynamic struct members shall be bound to a runtime symbolic address as other dynamic
variables.

Constraint 3.9 Static structs are split during the specialization such that dynamic mem-
bers appear as separate variables in the residual program.

We consider the interaction between structs and pointers below.

Example 3.29 Another strategy is to “narrow” the definition of partially-static structs
to the dynamic members. During specialization, static members are accessed, whereas
code is generated for references to dynamic members. Structs are not split. When com-
pilers pass structs via references, this approach may outperform struct splitting. We shall
not, however, pursue this any further. End of Example

3.7.2 Structures and functions

A struct can be passed to a function in two ways: call-by-value or via a pointer. The
Ansi C Standard allows functions to return structs.

Consider the following function that returns a struct.

/* make point: create point given coordinates */
struct point make_point(int x, int y, int z)
{

struct point pt;
pt.x = x; pt.y = y; pt.z = z;
return pt;

}

76

www.manaraa.com

Suppose that ‘x’ is static, and ‘y’ and ‘z’ are dynamic. Since ‘pt’ is returned by the
function, it cannot be split: it must be classified dynamic. To see why, consider a call ‘pt
= make point(1,2,3)’, and suppose that the member ‘x’ is static. The variable ‘pt.x’
would then need updating after specialization of ‘make point()’, which is undesirable.

Constraint 3.10 Structs returned by a function shall be dynamic.

Consider now the opposite: structs passed call-by-value to functions. The ‘length()’
function below receives a ‘struct point’.

/* length: compute length from origin to point */
double length(struct point pt)
{

return sqrt(pt.x * pt.x + pt.y * pt.y + pt.z * pt.z);
}

To have a clear separation of static and dynamic arguments, we prohibit passing of
partially-static structs.

Constraint 3.11 A struct type used in a parameter definition shall have either com-
pletely static members or completely dynamic members. In the latter case the struct
shall be classified dynamic.

Information lost due to the above requirement can be revealed by the passing of struct
members as separate variables. Naturally, care must be taken not to change the passing
semantics, e.g. by passing directly an array previously encapsulated in a struct.

Example 3.30 To avoid ‘struct point’ to be classified as dynamic (since it is passed
to the function ‘length()’), we apply the following transformation, which clearly can be
automated.

/* Transformed version of length(struct point pt) */
double length(int x, int y, int z)
{

struct point pt = { x, y, z };
return sqrt(pt.x * pt.x + pt.y * pt.y + pt.z * pt.z);

}

The use of the local variable ‘pt’ is needed if the address of the (original) parameter is
taken, see below. End of Example

Precisely, by applying the following transformation to subject programs, partially-static
structures can be “passed” to functions. The transformation can only be applied when
none of the members are of array type.

• A call ‘f(s)’ is changed to ‘f(s.x,s.y. . . ,s.z)’, where ‘x’,‘y’,. . . ,‘z’ are the mem-
bers of ‘s’. The function definition must changed accordingly.

77

www.manaraa.com

• In the body of the function, a local variable of the original struct type is introduced
and initialized via parameters.37

This transformation can obviously be automated.

3.7.3 Pointers to structures

This section considers pointers to structs created via the address operator &. Runtime
memory allocation is the subject of the section below.

When the address operator is applied to a static struct, the result is a pointer that
can be used to access the members. When the address operator is applied to a dynamic
struct, it can only be used to reference the struct object.

Example 3.31 Assume the usual binding-time assignment to ‘struct point’.

struct point pt1, pt2, *ppt;
pt1.x = 1; pt1.y = 2; pt1.z = 3; /* 1 */
ppt = &pt1; /* 2 */
pt2.x = ppt->x; pt2.y = ppt->y; /* 3 */
pt2 = *ppt; /* 4 */

Specialization proceeds as follows. In line 1, the assignment to ‘x’ is evaluated, and code is
generated for the rest. In line 2, a static pointer to ‘pt1’ is created, and is dereferenced in
line 3. Consider line 4. The assignment is between partially-static structs. Applying the
transformation described in Section 3.3 splits the assignments into a static and a dynamic
part. Thus, the following residual code will be generated.

int pt1_y, pt1_z, pt2_y, pt2_z;
pt1_y = 2; pt1_z = 3; /* 1 */
pt2_y = pt1_y; /* 3 */
pt2_y = pt1_y; pt2_z = pt1_z; /* 4 */

If the assignment in line 4 is not split, ‘struct point’ inevitably must be reclassified
dynamic. End of Example

Notice that structs cannot be lifted, so a struct appearing in a dynamic contexts must be
classified dynamic.

Constraint 3.12 Structs referred to by a dynamic pointer shall be classified dynamic.

Consider now the passing of a struct pointer to a function. For example, suppose
that the function ‘length’ is changed into ‘length(struct point *ppt)’ that accepts a
pointer to a struct. As in the case of pointers to other objects, this can cause (dynamic)
objects lexically out of scope to be propagated into the body of the called function. To
avoid this, pointers to partially-static structs are not allowed.

37This transformation increases the number of parameters to a function, and may thus represent a
call overhead. In the case of structs with a few members which can be are passed in registers, the
transformation has no effect, though.

78

www.manaraa.com

Constraint 3.13 A parameter of type “pointer to struct” shall be dynamic, if the struct
contains a dynamic member.

Since a struct referred to by a dynamic pointer itself must be classified dynamic; this fully
suspends the struct.

Example 3.32 Suppose that the function ‘length(struct point pt)’ takes the address
of the parameter ‘pt’, and uses it to compute the result. Suppose that the parameter
splitting transformation as outlined in the previous section is applied.

int length(int x, int y, int z)
{

struct point pt = { x, y, z };
struct point *ppt;
ppt = &pt;
return sqrt(ppt->x * ppt->x + ppt->y * ppt->y + ppt->z * ppt->z);

}
This function specializes into the same residual program as shown before (modulo copy
propagation elimination of ‘pt y = y’ and ‘pt z = z’). Notice that introduction of ‘pt’
is necessary for the address operator to be applicable. End of Example

3.7.4 Self-referential structures

A struct definition can refer to itself by the means of a pointer. Recall from Chapter 2 that
recursively defined structures are 1-limited by type definition. We convey this restriction
to binding-time assignments. For example,

struct nlist { struct nlist *next; char *name, *defn; }
defines a struct representing nodes in a list. If the binding time of ‘struct nlist’ is BT ,
the binding time of ‘next’ must be “static pointer to BT”, or “dynamic pointer”.

Constraint 3.14 Binding time assignments to self-referential structs are 1-limited.

The actual choice of k-limit has no influence on the rest of this chapter.

3.7.5 Runtime allocation of structures

In C, all (dynamic) runtime memory allocation is performed by the means of the library
function ‘malloc()’, or one of its variants.38 For example, the call

(struct nlist *)malloc(sizeof(struct nlist))

returns a pointer to storage to represent an object of type ‘struct nlist’. However,
nothing prevents a programmer from allocating twice as much memory as really needed,
or to convert the returned pointer to a ‘struct point *’ and use it as such. Clearly, this
allocation scheme is too liberal for automatic program analysis and transformation.

We shall therefore suspend all calls to ‘malloc’ (and its cousins), and introduce a
special allocation function ‘alloc()’ with a more restricted semantics.

38In the case of Unix, these functions all use the ‘sbrk’ operating system call to get a chunk of storage.

79

www.manaraa.com

Constraint 3.15 The call ‘alloc(TypeName)’ shall perform the following:

• Return a pointer (suitably converted) to a sufficient chunk of memory to represent
an object of the indicated type.

• Inform the memory manager in the generating extension that the storage has been
allocated.

• In the case where the type is a partially-static struct, add the declarations of its
dynamic members as global variables to the residual program.

An ‘alloc()’ will be performed at specialization time, i.e. memory will be allocated when
the generating extension is run, if it appears in a static context, e.g. if the result is assigned
a static pointer.

We also assume a function ‘delete()’ with same functionality as ‘free()’. The han-
dling of runtime memory in the generating extension is discussed in detail in Section 3.10.

Example 3.33 Consider the following program fragment which allocates a node and
initializes it. Assume that ‘next’ is a static pointer, that ‘name’ is static, and that ‘defn’
is dynamic.

struct nlist *np;
np = alloc(struct nlist);
np->next = NULL;
np->name = strdup("fubar");
np->defn = strdup("foobar");
printf("Name is %s, definition is %s", np->name,np->defn);

The call to ‘alloc()’ (static) causes some memory to be allocated, and the definition of
‘alloc1 defn’ to be added to the residual program. The assignment ‘np->next = NULL’
initializes the static ‘next’ with NULL, and ‘np->name = strdup("fubar")’ the ‘name’
field with ‘"fubar"’. The final assignment is dynamic. This yields the following residual
program.

char *alloc1_defn;
alloc1_defn = strdup("foobar");
printf("Name is %s, definition is %s", "foobar", alloc1 defn);

Notice that the static pointers ‘next’ are eliminated, and all the pointer traversal is
performed at specialization time. End of Example

Automatic detection of ‘malloc()’ calls that safely can be replaced by ‘alloc()’
requires an analysis of the heap usage. We assume it has been done prior to the generating
extension transformation. An ‘alloc()’ variant must exist for each base type, pointer
type, and user-defined type. These can be generated automatically of the basis on type
definitions.

80

www.manaraa.com

struct nlist {
struct nlist *next; /* next entry in the chain */
char *name; /* defined name */
char *defn; /* replacement text */

} *hashtab[HASHSIZE];
/* lookup: look for s in hashtab */
struct *nlist lookup(char *s)
{

struct nlist *np;
for (np = hashtab[hash(s)]; np != NULL; np = np->next)

if (strcmp(s, np->name) == 0) return np; /* found */
return NULL; /* not found */

}
/* install: put (name,defn) into hashtab */
int install(char *name, char *defn)
{

struct nlist np; unsigned hashval;
if ((np = lookup(name)) == NULL) { /* not found */

np = alloc(struct nlist);
if (np == NULL || (np->name = strdup(name)) == NULL) return 0;
hashval = hash(name);
np->next = hashtab[hashval];
hashtab[hashval] = np;

} else /* already there */
delete (np->defn);

if ((np->defn = strdup(defn)) == NULL) return 0;
return 1;

}

Figure 22: Functions for text substitution

3.7.6 Replacing dynamic allocation by static allocation

We demonstrate specialization of a set of functions implementing text substitution. The
example stems from Kernighan and Ritchie [Kernighan and Ritchie 1988, page 143], and
is reproduced in Figure 22. The main result of this example is the replacement of (dy-
namic) runtime allocation by static allocation.

A few changes to the original program have been made. The call to ‘malloc()’ has
been replaced by a call to ‘alloc()’, and the ‘install()’ function changed to return an
integer instead of the pointer to the installed node.39

We consider specialization of the following sequence of statements:

struct nlist *np;
install("fubar", "foobar");
if ((np = lookup("fubar")) != NULL)

printf("Replace %s by %s", "fubar", np->defn);

where it is assumed that the second argument to ‘install()’ is unknown.

39Both changes are essential. The former to assure memory is allocated during the specialization; the
latter to prevent ‘struct nlist’ from becoming dynamic.

81

www.manaraa.com

char *alloc1_defn;
int install_fubar(char *defn)
{

if ((alloc1_defn = strdup(defn)) == NULL) return 0;
return 1;

}

install_fubar("foobar");
printf("Replace %s by %s", "fubar", alloc1_defn);

Figure 23: Specialized version of Figure 22

By examination of the program text we see that ‘struct nlist’ is a (partially) static
struct with ‘next’ and ‘name’ static and ‘defn’ dynamic. Even though the function
‘lookup()’ manipulates pointers to partially-static structs, it can be classified static.40 In
the definition of ‘install()’, only the references to ‘defn’ are dynamic.

The specialized program due to the call ‘install("fubar","foobar")’ is given in
Figure 23. During specialization, the calls to ‘lookup()’ have been evaluated statically.
Further, the runtime allocation has been replaced by static allocation in the specialized
program. The test in the if statement has been evaluated to “true”, since ‘lookup()’ is
static, and the pointer reference ‘np->defn’ reduced to ‘alloc1 defn’.

3.7.7 Unions

A union resembles a struct but with a major operational difference: at a time, a union
can only represent the value of one member, and henceforth only memory to represent
the largest member needs to be allocated.

Suppose that a union was split into separate variables, e.g.

union U { int x, y, z; }

This would increase the storage usage in the residual program considerably — naturally
depending on the number of static members in the union. To avoid this we suspend all
unions.

Constraint 3.16 Unions shall be classified dynamic.

Example 3.34 Splitting of union is not straightforward. The Standard specifies that if a
union contains members of struct type that have an initial member sequence in common,
e.g. ‘tag’:

union Syntax {
struct { int tag; ... } Expr stmt;
struct { int tag; ... } If stmt;

}

40Technically, the member ‘defn’ of ‘struct nlist’ is not used in the body of lookup.

82

www.manaraa.com

when it is legal to access a shared member (‘tag’) through another struct member (e.g.
If stmt) than the one that defined the field (e.g. Expr stmt).

This implies that e.g. the field ‘tag’ cannot be split into separate variables, and so
must be a “shared” variable. End of Example

In our experience this restriction is not too strict in practice. More experiments are
needed to clarify this, however.

3.7.8 Bit-fields

Bit-fields are used to restrict the storage of a member, but have otherwise no influence
on program specialization. Thus, bit-field specifications are can be translated unchanged
to both the generating-extension and — from there — to the residual programs. Notice
that since generating extensions are executed directly, no representation problems are
encountered, e.g. due to programs relying on a particular layout of a struct.

3.8 Input and output

In the previous sections it was assumed that static input was delivered via parameters
to the generating extension’s goal function. This section is concerned with I/O: reading
and writing standard input/output, and files. Moreover, we discuss the standard-library
functions, e.g. ‘pow()’, which are declared ‘extern’ in the standard header files.

3.8.1 Standard input and output

Many (small) C programs read data from standard input and write the result to the stan-
dard output. Naturally, no output shall occur when a generating extension is executed.

Constraint 3.17 All writes to standard output shall be suspended.

When reading of input streams are allowed during specialization, care must be taken
to avoid duplication of I/O-operations. The potential risk is illustrated in the code below.

int d; float f;
if (dyn-exp)

scanf("%d", &d);
else

scanf("%f", &f);

Specialization of this code will cause the ‘scanf()’ to be called twice contrary to normal
execution.

User annotations can indicate which input calls that desirably should be performed
during the execution of the generating extension. The control-dependence analysis de-
veloped in Chapter 6 can be employed to detect and warn about dubious read calls. We
leave this extension to future work.

Constraint 3.18 All reads from standard input shall be suspended.

File access and reading of static input from files are discussed below.

83

www.manaraa.com

/* miniprintf: mini version of printf */
void minprintf(char *fmt, void *values[])
{

int arg = 0;
char *p, *sval;
for (p = fmt; *p; p++) {

if (*p != ’%’) {
putchar(*p);
continue;

}
switch (*++p) {
case ’d’:

printf("%d", *(int *)values[arg++]);
break;

case ’f’:
printf("%f", *(double *)values[arg++]);
break;

case ’s’:
for (sval = *(char **)values[arg++]; *sval; sval++)

putchar(*sval);
break;

default:
putchar(*p);
break;

}
}

}

Figure 24: A mini-version of printf()

3.8.2 Case study: formatted output — printf

The output function ‘printf()’ (and its friends) takes a format string and a number
of values, and converts the values to printable characters. Thus, ‘printf()’ is a small
interpreter: the format string is the “program”, and the values are the “input”. By spe-
cializing with respect to the format string, the interpretation overhead can be removed.41

[Consel and Danvy 1993].
Figure 24 contains a mini-version of the ‘printf()’ library function; the program

stems from Kernighan and Ritchie [Kernighan and Ritchie 1988, Page 156]. A minor
change has been made: instead of using a variable-length argument list, it takes an array
of pointers to the values to be printed. The reason for this change will become apparent
in the next section.

Suppose that ‘fmt’ is static and ‘values’ is dynamic. The for loop is controlled by
the format string, and can be unrolled. The tests in both the if statements and the
switch statements are also static. The output calls are all dynamic, cf. the discussion in
Section 3.8.1.

Let the static ‘fmt’ string be ‘"%s = %d\n"’. The specialized version is shown in

41This example was suggested to us by Olivier Danvy.

84

www.manaraa.com

void minprintf_fmt(void *values[])
{

char *sval;
for (sval = *(char **)values[0]; *sval; sval++)

putchar(*sval);
putchar(’ ’);
putchar(’=’);
putchar(’ ’);
printf("%d", *(int *)values[1]);
putchar("\n");

}

Figure 25: The printf() function specialized with respect to "%s = %d\n"

Figure 25. Running the original and the specialized program 100,000 times on the dynamic
input "value" and 87 takes 2.12 and 1.70 seconds, respectively. That is, the speedup is
1.2. Naturally, the speedup depends on the static input; larger static input yields larger
speedup.

3.8.3 Variable-length argument lists

By the means of the ellipsis construct ‘...’, functions can be defined to taken a variable-
length argument list. For example, the declaration ‘void printf(char *fmt, . . .)’ spec-
ifies that ‘printf()’ takes an arbitrary number of arguments besides a format string.

When all calls to a function with a variable-length argument-list are known, specialized
versions of the function can be created by a simple preprocess, and the program can be
specialized normally. Suppose that the function is part of a library, and hence call-sites
are unknown.

This implies that the type and number of arguments first will be known when the
generating extension is run. This complicates the memory management42 and renders
binding-time analysis hard.

Moreover, according to the standard definition of ‘. . . ’, there must be at least one
argument in front of an ellipsis.

Constraint 3.19 Ellipses and the parameter before shall be suspended to runtime.

In the case of the ‘printf()’ function studied in the previous section, this would have
caused ‘fmt’ to be suspended, rendering specialization trivial.

We believe that variable-length argument lists are rare in C programs, so suspension
seems reasonable. We have not implemented this feature into C-Mix, and will ignore it
in the rest of this thesis.

3.8.4 File access

So far we have courageously assumed that static values are delivered through goal pa-
rameters. In practice, inputs are read from files, generated by functions etc. We discuss

42The generating of copying functions depend on the availability of type information.

85

www.manaraa.com

reading of files, and more broadly how static input is delivered at specialization time. The
material in this section is rather pragmatically oriented.

Reading of files is similar to scanning of standard input, Section 3.8.1. User annotation,
for instance in the form of a ‘cmix-fscanf’, can be employed to indicate streams to be read
during specialization. To avoid duplication of I/O-operations, warnings about static reads
under dynamic control must be given to the user. We do not consider this an essential
feature, for reasons to be discussed below, and leave it to future work.

A program normally consists of several translation units, or modules, each implement-
ing different aspects of the overall system. Typically, there is a module for reading and
initialization of data structures, and a module implementing the “computation”. Nor-
mally, specialization is applied to the “computation module” — nothing or only little is
gained by specialization of input routines.43 A program system is specialized as follows.
The computation module is binding time analyzed and transformed into a generating
extension. The resulting generating extension is linked together with the I/O-functions
that open, read and close files. Thus, there is no real need for reading of files during
specialization.

3.8.5 Error handling

Partial evaluation is more “strict” than normal order evaluation.44 The reason is that a
partial evaluator executes both the branches of a dynamic if while standard execution
executes only one.

Example 3.35 Consider the following program fragment where a ‘lookup()’ function
returns whether a record has been found, and in the affirmative case sets the pointer ‘p’
to point to it.

found = lookup(name, &p);
if (found) printf("Number %d\n", p->count);
else printf("Not found\n");

Partial evaluation of the fragment, where ‘found’ is dynamic and ‘p’ is static, may go
wrong. End of Example

Errors at specialization time can be detected by guarding the potential expressions.
For example, safe pointers [Edelson 1992] can detect dereferencing of NULL-pointers and
trap a handler. We have not implemented this in the current version of C-Mix, and we
suspect it will be expensive.

3.8.6 Miscellaneous functions

The standard library is an important part of C. For example, the library ‘libm’ defines
the functions declared in ‘<math.h>’. All library functions are declared ‘extern’.

43A remarkable exception is that ‘scanf’ can be specialized similarly to ‘printf’, eliminating the inter-
pretation overhead.

44Partial evaluation has been termed “hyper strict” in the literature.

86

www.manaraa.com

`tdef Ti ⇒ T ′i `decl di ⇒ d′i `fun fi ⇒ f ′i
`gegen 〈T1; . . . ; Tm, d1; . . . ; dn, f1 . . . fl〉 ⇒

T ′1; . . . ; T
′
m

d′1; . . . ; d
′
n

f ′1 . . . f ′l
int generate(dgoal

1 , . . . , dgoal
k)

{
Declare-residual-struct;
Declare-residual-globals;
fgoal(dgoal

1 ,. . . ,dgoal
n);

unparse();
return 0;

}

Figure 26: Generating-extension transformation

Recall from Section 3.5 that calls to externally defined functions are suspended. This
has the unfortunate effect that a static call ‘pow(2,3)’ is suspended, and not replaced by
the constant 8, as expected.

Example 3.36 The reason for suspending external functions is that they may side-effect
global variables. This is indeed the case in the ‘pow()’ function.

#include <math.h>
int main(void)
{

double p = pow(2.0, 3.0);
if (errno) fprintf(stderr, "Error in pow");
else printf("Result %f", p);

}

Many library functions report errors via the (external) variable ‘errno’. End of Example

Static calls to external functions that do not side-effect global variables can be evalu-
ated at specialization time (provided their definitions are present).

Definition 3.2 A function that does not side-effect non-local variables is called pure. 2

Pure functions can be detected in two ways: either by user annotations, or automat-
ically. In Section 6 we outline an analysis to determine pure functions. In examples we
use a specifier ‘pure’ to indicate pure functions.

Example 3.37 As mentioned above, many functions declared in ‘<math.h>’ are not pure
since they return errors in the global variable ‘errno’. However, by redefining the functions
to invoke the ‘matherr()’ function, the problem can be circumvented.

Thus, by declaring the power function ‘extern pure double pow(double, double)’,
the call ‘pow(2.0, 2.0)’ will be evaluated at specialization time. End of Example

87

www.manaraa.com

`tdef T ⇒ T ′ `decl di ⇒ d′i `stmt Sj ⇒ S′j
`fun T f(d1, . . . , dm){ dm+1, . . . , dn S1, . . . , Sk} ⇒

T ′ f(d′1, . . . , d
′
m){ d′m+1, . . . , d

′
n S′1, . . . , S

′
k}

`decl di ⇒ d′i `stmt Si ⇒ S′i
`fun T f(d1, . . . , dm){dm+1, . . . , dn S1, . . . , Sk} ⇒

Code f(d′1, . . . , d
′
m)

{
d′m+1, . . . , d

′
n

cmixStateDesc locals[] ={x1, . . . , xn}; /* d′i ≡ xi T ′i*/
if (seenB4()) return cmixFun();
cmixPushState(locals);
cmixPushFun();
Define-residual-variables;
cmixPendinsert(&&entry);

cmixPendLoop:
if (cmixPP = cmixPending()) {
lab = cmixRestore();
cmixLabel(lab);
goto *cmixPP;

} else {
cmixPopFun();
cmixPopState();
cmixFun();

}
entry:

S′1, . . . , S
′
l

}

Figure 27: Transformations of functions

3.9 Correctness matters

It is crucial that program transformations preserve the semantics of subject programs. It
is fatal if an optimized program possesses a different observational behaviour than the
original program. A main motivation for adopting the generating-extension approach was
to assure correctness of residual programs.

In this section we summarizes the generating-extension transformation. We make no
attempt at proving the correctness (Definition 3.1). However, we hope that it is clear
that correctness of the generating-extension transformation is easier to establish than the
correctness of a symbolic evaluator.

The Figures 26, 27, 28, 29, 30, 31, and 32, summarize the generating-extension trans-
formation.

Input is an annotated program where dynamic constructs are indicated by an under-
line. For simplicity we assume that lifting of static values in dynamic contexts is denoted
explicitly by the means of ‘lift’ functions. In practice, application sites for lift functions
would be discovered during the transformation. The rule for the address operator does not
incorporate function identifiers. Further, we assume that dynamic indirect calls are lifted
to the statement level. Finally, we have not shown “unparsing” of abstract declarations

88

www.manaraa.com

[decl]
`type T ⇒ T ′

`decl T x ⇒ T ′ x
`decl extern T x ⇒ extern T x

[base] `type 〈τb〉 ⇒ 〈τb〉 `type 〈τb〉 ⇒ 〈Code〉

[struct] `type 〈struct S〉 ⇒ 〈struct S〉 `type 〈struct S〉 ⇒ 〈Code〉

[pointer]
`type T ⇒ T ′

`type 〈∗〉T ⇒ 〈∗〉T ′ `type 〈∗〉 ⇒ 〈Code〉

[array]
`type T ⇒ T ′

`type 〈[n]〉T ⇒ 〈[n]〉T ′ `type 〈[n]〉T ⇒ 〈Code〉

[fun]
`decl di ⇒ d′i
`type T ⇒ T ′

`type 〈(di)〉T ⇒ 〈(d′i)〉T ′
`type 〈(di)〉T ⇒ 〈Code〉

Figure 28: Transformation of declarations

[struct]
`decl di ⇒ d′i
`tdef struct S {di} ⇒ struct S {d′i}

`tdef struct S { d′i} ⇒;

[union]
`decl di ⇒ d′i
`tdef union U {di} ⇒ union U {d′i}

`tdef union U { d′i} ⇒;

[enum] `tdef enum E{x = e} ⇒ enum E{x = e}

Figure 29: Transformation of type definitions

to concrete syntax.

89

www.manaraa.com

[call]

`exp ei ⇒ e′i
`stmt x = e0(e1,. . . ,en)⇒

{
switch((int)e′0){

case 1:
cmixAssign(x,"=",
cmixCall(f1(e′s),e

′
d))

case n:
cmixAssign(x,"=",
cmixCall(fn(e′s),e

′
d))

default:
cmixAssign(x,"=",
cmixPCall(e′0(e

′
s),e

′
d))

}
}

where eo calls f1,. . . ,fn

[empty] `stmt; ⇒ ;

[exp]
`exp e ⇒ e′

`stmt e;⇒ e′
`exp e ⇒ e′

`stmt e;⇒ cmixExpr(e′);

[if]

`exp e ⇒ e′

`stmt S1 ⇒ S′m `stmt S2 ⇒ S′n
`stmt if (e) Sm else Sn ⇒

if (e′) S′m else S′n

`exp e ⇒ e′ `stmt Sm ⇒ S′m `stmt Sn ⇒ S′n
`stmt if (e) Sm else Sn ⇒

{
i: cmix test = e′;
cmixIf(cmix test,

cmixPendinsert(&&m),
cmixPendinsert(&&n));

goto cmixPendLoop;
m : S′m;
cmixGoto(cmixPendinsert(&&l));
goto cmixPendLoop;
n : S′n
cmixGoto(cmixPendinsert(&&i));
goto cmixPendLoop;
l : ;

}

[switch]
`exp e ⇒ e′ `stmt S ⇒ S′

`stmt switch (e) S ⇒
switch (e′) S′

`exp e ⇒ e′ `stmt S ⇒ S′

`stmt switch (e) S ⇒ Similar to if

[case]
`tstmt S ⇒ S′

`stmt case e: S ⇒
case e: S′

`tstmt S ⇒ S′

`stmt case e: S ⇒ Similar to if

[default]
`stmt S ⇒ S′

`stmt default: S ⇒
default: S′

`stmt S ⇒ S′

`stmt default: S ⇒ Similar to if

Figure 30: Transformation of statements (part 1)

90

www.manaraa.com

[while]
`exp e ⇒ e′ `smt Sm ⇒ S′m
`stmt while (e) Sm ⇒

while (e′) S′m

`exp e ⇒ e′ `stmt Sm ⇒ S′m
`stmt while (e) Sm ⇒

{
l : cmix test = e′;
cmixIf(cmix test,

cmixPendinsert(m),
cmixPendinsert(n));

goto cmixPendLoop;
m : S′m
cmixGoto(cmixPendinsert(l));
goto cmixPendLoop;
n : ;

}

[do]
`exp e ⇒ e′ `stmt S ⇒ S′

`stmt do S while (e)⇒
do S′ while (e′)

`exp e ⇒ e′

`stmt S ⇒ S′

`stmt do S while (e)⇒
{

l : S′

cmix test = e′;
cmixIf(cmix test,

cmixPendinsert(l),
cmixPendinsert(m))

goto cmixPendLoop;
m : ;

}

[for]

`stmt ei ⇒ e′i `stmt S ⇒ S′

`stmt for (e1;e2;e3) S ⇒
{

e′1;
while (e′2) {

S′

e′3
}

}

`exp ei ⇒ e′i `stmt S ⇒ S′

`stmt for (e1;e2;e3) S ⇒
{
cmixExpr(e′1);
l: cmix test = e′2
cmixIf(cmix test,

cmixPendinsert(m),
cmixPendinsert(n));

goto cmixPendLoop;
m : S′; cmixExpr(e′3);
cmixGoto(cmixPendinsert(l));
goto cmixPendLoop;
n : ;

}
[label]

`stmt S ⇒ S′

`stmt l : S ⇒ l : S′

[goto] `stmt goto m ⇒ goto m

[return]
`exp e ⇒ e′

`stmt return e ⇒ return e′

`exp e ⇒ e′

`stmt return e ⇒
{
cmixReturn(e′);
goto cmixPendLoop;

}
[comp]

`stmt Si ⇒ S′i
`stmt { S1 . . . Sn} ⇒ { S′1 . . . S′n}

Figure 31: Transformations of statements (part 2)

91

www.manaraa.com

[const] `exp c ⇒ c
`exp e ⇒ e′

`exp lift(e)⇒ cmixLift(e′)

[var] `exp v ⇒ v

[struct]
`exp e1 ⇒ e′1
`exp e1.i ⇒ e′1.i

`exp e1 ⇒ e′1
`exp e1.i ⇒ cmixStruct(e′1,i)

[indr]
`exp e1 ⇒ e′1
`exp ∗e1 ⇒ ∗e′1

`exp e1 ⇒ e′1
`exp ∗e1 ⇒ cmixIndr(e′1)

[array]
`exp ei ⇒ e′i
`exp e1[e2]⇒ e′1[e

′
2]

`exp ei ⇒ ei

`exp e1[e2]⇒ cmixArray(e′1,e
′
2)

[addr]
`exp e1 ⇒ e′1
`exp &e1 ⇒ &e′1

`exp e1 ⇒ e′1
`exp &e1 ⇒ cmixAddr(e′1)

[unary]
`exp e1 ⇒ e′1
`exp o e1 ⇒ o e′1

`exp e1 ⇒ e′1
`texp o e1 ⇒ cmixUnary(o,e′1)

[binary]
`exp ei ⇒ e′i
`exp e1 o e2 ⇒ e′1 o e′2

`exp ei ⇒ e′i
`exp e1 o e2 ⇒ cmixBinary(e′1,o,e

′
2)

[alloc] `exp alloc(T)⇒ alloc(T) `exp alloc(T)⇒ cmixAlloc(T)

[ecall]
`exp ei ⇒ e′i
`exp f(e1, . . . , en) ⇒ f(e′1, . . . , e

′
n)

`exp ei ⇒ e′i
`exp ef(e1,. . . ,en)⇒ cmixEcall(ef,e′1,. . . ,e

′
n)

[call]
`exp ei ⇒ e′i
`exp f(e1,. . . ,en)⇒ f(e′1,. . . ,e

′
n)

`exp ei ⇒ e′i
`exp f(e1,. . . ,en)⇒

cmixCall(f(e′1,. . . ,e
′
m), e′m+1, . . . e

′
n)

where e1,. . . ,em static

[pcall]
`exp ei ⇒ e′i
`exp e0(e1,. . . ,en)⇒ e′0(e

′
1,. . . ,e

′
n)

[preinc]
`exp e1 ⇒ e′1
`exp ++e1 ⇒ ++e′1

`exp e1 ⇒ e′1
`ext ++e1 ⇒ cmixPre("++",e′1)

[postinc]
`exp e1 ⇒ e′1
`exp e1++⇒ e′1++

`exp e1 ⇒ e′1
`ext e1 ⇒ cmixPost("++",e′1)

[assign]
`exp ei ⇒ e′i
`exp e1 aop e2 ⇒ e′1 aop e′2

`exp ei ⇒ e′i

`exp e1 aop e2 ⇒ cmixAssign(e′1,"aop",e
′′
2)

[comma]
`exp ei ⇒ e′i
`exp e1, e2 ⇒ e′1, e

′
2

`exp ei ⇒ e′i
`exp e1, e2 ⇒ cmixComma(e′1,e

′′
2)

[sizeof] `exp sizeof(T)⇒ cmixSize(T)

[cast]
`exp e1 ⇒ e′1
`exp (T)e1 ⇒ (T)e′1

`exp e1 ⇒ e′1
`exp (T)e1 ⇒ cmixCast("T",e′1)

Figure 32: Transformation rules for expressions

92

www.manaraa.com

3.10 Memory management

This section is concerned with the management of static stores in a generating extension.
Due to the presence of assignments and pointers, this is considerably more complicated
than in functional languages. For example, a program may rely on locations, and pointers
may point to objects of unknown size.

During execution of the generating extension it is necessary to make copies of the
static values, and to restore these at a later time. Furthermore, to implement sharing of
residual code, the active state must be compared with previously encountered states.

The memory management is part of the generation-extension library.

3.10.1 Basic requirements

Recall that the part of the store where computations are carried out is called the active
store. It basically consists of the storage allocated for static objects. A copy of the active
store is called a static store.

Copies of the active store must be made when a generating function is invoked (in
order to determine sharing of the residual function to be generated); after generation of
a residual if statement (for specialization of the branches), unless residual code can be
shared, and after generation of a residual goto statement (to enable sharing of the target),
unless residual code can be shared.

Copying and comparison of static values during specialization may both be expensive
and memory consuming. The basic requirements to the memory management can be
listed as follows.

1. The memory management must support comparison of the active store and static
stores.

2. The memory management must implement copying of the active store to a new area.

3. The memory management must implement restoring of a static store to be the active
store.

4. The memory management must represent static stores “compactly” and enable ef-
ficient comparison of values.

These requirements are non-trivial.
During the execution of a generating extension, the static values are allocated on the

program stack (in the case of local variables), at statically fixed locations (in the case of
global variables), or at the heap. Consider the generating function for a function with a
static parameter of type pointer to an integer:

Code foo(int *p)
{

...
}

93

www.manaraa.com

The parameter ‘p’ is allocated on the program stack. Suppose that ‘foo()’ is called, and
it must be determined whether it previously has been applied to the same instance of ‘p’.

However, where the content of the parameter ‘p’ easily can be compared with previous
values, comparison of the indirection is harder. It does not suffice to compare ‘*p’ since ‘p’
may point to an array, in which case all entries should be compared. There is, though, no
easy way to determine the size of the object ‘p’ points to — the expression ‘sizeof(*p)’
simply returns the size of ints, not the size of the data structure. Compare for example
the calls ‘foo(&x)’ and ‘foo(a)’, where ‘x’ is an integer variable and ‘a’ is an array.

A specializer overcomes the problem by using a tagged representations of static values,
but this conflicts with the underlying idea of generating extensions: static values are
represented directly. We describe a solution in the next section.

Example 3.38 To see why a compact representation is needed, consider the following
example. Suppose that ‘Pixel image[500][500]’ is a global static array.

Pixel image[100][100];
int process_image()
{

if (dyn-exp)
... plot_point(image[x][y]);

else
... save_point(image[x][y]);

}

Specialization of the function above causes the array ‘image’ to be copied twice due to
the dynamic if. Thus, the generating extension now uses twice the storage as ordinary
execution. Clearly, the storage usage may grow exponentially. End of Example

In this section we describe a storage model which tries to share copies of static values
whenever possible. A further extension is analysis of the program to detect when copying
of objects is needless, e.g. when an object is dead.

Example 3.39 One may ask why it is necessary to copy and restore the active store when
it apparently is not needed in the Flow-chart Mix system [Gomard and Jones 1991a]. The
reason is that the flow-chart language does not support locations as first class values, and
thus no operations can rely on addresses. The update of the store can henceforth be
implemented in a purely functional way (in Scheme, for example), and the copying of the
state then happens in a “by-need” manner. End of Example

3.10.2 The storage model

We describe a storage model where objects allocated at the same location in the active
store may be shared between copies. To each copy of the state we assign a unique store
number. The store number is employed to differentiate between objects copied due to the
processing of different specialization points.

A store description is a function from a location and store number to a location:
SD : Loc × StNum → Loc. Intuitively, SD(l, n) = l′ means that the copy of the object
at location l with store number n is located at address l′.

94

www.manaraa.com

- -
J

J
Ĵ

¡
¡

¡ª

SD

201c 1 2

image copy

301a

Figure 33: Storage description and copies of static objects

The storage description can for example be implemented as a hash table representing
lists of pairs of store numbers and locations, over locations.

Example 3.40 Recall the scenario in Example 3.38 and assume that ‘image’ is allocated
at location 201c, say. Due to the dynamic conditional, the static state will be copied twice,
and the store description will contain the following bindings [(201c, 1) 7→ 301a; (201c, 2) 7→
301a. It says that the copies of ‘image’ with store numbers 1 and 2 are located at address
301a. See Figure 33. End of Example

We assume the following methods on a storage description ‘StDesc’:

StDesc.find : Loc× StNum → Loc
StDesc.insert : Loc× Size× StNum → Loc
StDesc.restore : Loc× Size× StNum → Loc

defined as follows.
The method ‘find(l,n)’ returns the location of the n’th copy of the object at location

l. The method ‘insert(l,s,n)’ copies the object at location l of size s and gives it store
number n. The method ‘restore(l,s,n)’ restores the n’th copy of the object (originally)
from location l of size s.

Example 3.41 Example 3.40 continued. The call ‘StDesc.find(201c,1)’ returns the
address 301a. The call ‘StDesc.restore(201c,100000,1)’ copies the image array to its
original position. End of Example

3.10.3 State descriptions

To copy an object, its location and size must be known. If the object contains a pointer,
the referenced object must also be copied. To determine the size of objects, state descrip-
tions are introduced.

A state description is associated with every generating function, and the global state.
It records the size and location of static objects. Further, to each object an object function
is bounded. The object function implements copying, restoring and comparison of object
of that type.

95

www.manaraa.com

Example 3.42 Suppose that ‘int n, a[10], *p’ are static variables. A corresponding
state description is

StateDesc locals[] = { { &x, sizeof(n), &state_int },
{ &a, sizeof(a), &state_int },
{ &p, sizeof(p), &state_ptr } };

where ‘state int()’ and ‘state ptr()’ are object functions for integer and non-function
pointers, respectively. End of Example

State descriptions come into existence and disappear together with functions, so they
can be represented as automatic variables in generating functions (plus one for the global
state). To make the location of the state descriptions currently active known, we use a
stack.

Example 3.43 When a (generating) function is entered, its state description is pushed
on a StateDesc stack. At function return, it is popped again.

Code f(int n)
{

int a[10], *p;
StateDesc locals[] = { ... };
push_state(locals);
...
pop_state();
return pop_fun();

}

The state description stack contains the addresses of all active state descriptions. A state
description for a function is active from the function has been invoked till it returns.

Notice how the state description is initialized (by the means of the address operator)
to contain the addresses of parameters and local variables. End of Example

Now suppose we aim to find the size of the object pointed to by ‘p’. This can be done
by scanning of the state descriptions at the state description stack until an object is found
that is allocated at the location to which ‘p’ points.

Example 3.44 Consider a string constant ‘char *str = "Hello"’. Since string con-
stants cannot be assigned, there is no need to copy these at specialization points, and
comparison can be accomplished by pointer equality. End of Example

3.10.4 Object copy functions

To copy an object of base type it suffices to know its location and size. The size of a
predefined type can be determined via the sizeof operator. However, in the case of user
defined types, e.g. a struct, the copying depends on the definition. For example, if a
member is of pointer type, the referenced object must be taken into account. For this an
object function is associated to each type.

96

www.manaraa.com

Example 3.45 Let a struct be defined as follows: ‘struct S { int x, *p; }’. To copy
an object of that type, the object function first copies the ‘x’ and ‘p’ members, and next
calls the object function for the objects ‘p’ points to. End of Example

An object function takes a specification flag (copy, compare or restore), the location
of the object to handle, and a store number. It returns the size of the object it treats.
The algorithm for copying the active store is given below.

Algorithm 3.3 Copy the state corresponding to ‘stat desc’.

snum = next_state_number++; /* New unique state number */
/* Copy objects in state description */
for (<loc,size,sfun> in stat_desc) copy_obj(loc,size,snum,sfun);
/* Copy object at loc and size to store number snum */
void copy_obj(void *loc, size_t size, int snum, OFun (*fp)())
{

StDesc.insert(loc,size,snum);
for (p = loc; p < loc + size;)

p += sfun(COPY, p, snum);
}

}

2

The copying works as follows. For each object listed in the state description, the aux-
iliary function ‘copy obj()’ is called. It copies the data object to the storage description
via the function ‘insert()’, and calls the object function on each base object.45

Example 3.46 The (copy) object function for int is simple.

/* Copy an int object */
void *state_int(void *loc, int snum)
{

return sizeof (int);
}

The (copy) object function for pointers uses the state description stack to determine the
size of the referenced object.

/* Copy a pointer object (not function pointer) */
void *state_ptr(void *loc, int snum)
{

if (*loc != NULL) { /* Not the NULL pointer */
<loc1,size1,ofun1> = StateDescStack.lookup((void *)*loc,snum);
copy_obj(loc1,size1,snum,ofun1);

return sizeof (void *);
}

End of Example

45For example, in the case of an array, the data object is the entire array, and an object is an entry.

97

www.manaraa.com

Object functions for base types and pointers can be predefined in the generating-
extension library. Object functions for user-defined types can be defined as part of the
generating-extension transformation on the basis of the struct definition.

Example 3.47 The state function for the struct S { int x, *p; } is given below.

void state_S(void *loc, int snum)
{

if ((loc = (struct S *)loc->p) != NULL) {
<loc1,size1,ofun1> = StateDescStack.lookup(loc, snum);
copy_obj(loc1,size1,snum,ofun1);

}
return sizeof (struct S);

}

Notice that if a pointer references a member of a struct, the whole object — and not
just the member — is copied. This introduces a slight overhead, but does not matter in
practice. End of Example

A note. The C standard allows a pointer to point one past an array but not such
a pointer to be dereferenced. Consider the following situation. Given definitions ‘int
*p, a[10], b[10]’ where ‘p’ points to ‘a + 10’. Even though a program cannot rely on
‘b’ being allocated in continuation of ‘a’, it is often the case. This confuses the memory
management: does ‘p’ actually points to ‘a’ or to ‘b’? To be safe, both are copied.

The algorithms for restoring and comparing objects are similar to Algorithm 3.3, and
hence omitted.

The memory management may seem expensive but it is not unacceptable in practice.
Recall that side-effects normally are suspended, with the consequence that only local and
global objects needs to be copied. Heap-allocated data structures are seldom copied.

Example 3.48 The memory usage can be reduced dramatically due to the following
observation. Sharable functions commit no side-effects It is therefore not necessary to
copy non-local objects, since they cannot be assigned. The state description can be
employed to determined whether an object is local or non-local. End of Example

3.10.5 The seenB4 predicate

The ‘seenB4()’ predicate shall return true if a function’s static parameters and the global
variables match a previous invocation, and the function is specified to be sharable. This
means that a copy of the values to which a function was specialized must be associated
with each residual function.46

A minor complication must be taken into account. The parameters of a function are
not necessarily allocated at the same location at the program stack every time the function
is called. It is easy to program around this problem, however.

46There is no need to save a copy for functions that cannot be shared.

98

www.manaraa.com

3.10.6 Improved sharing of code

The development so far is sufficient for the handling of the static stores in a generating
extension. For example, a dynamic goto is transformed into the statements

cmixGoto(cmixPendinsert(label)); goto cmixPendLoop;

where ‘cmixPendinsert()’ uses the ‘StDesc.insert()’ function to copy the active store.
However, to increase the amount of sharing, specialization can be restricted to live vari-
ables.

Example 3.49 Assume that exp is a dynamic expression, and that the goto statements
are specialized.

if (exp) { x = 1; goto l; } else { x = -1; goto l; }
l: x = 13;

At program point ‘l’, ‘x’ is dead, but it will still be specialized twice since ‘x’ differs at
the two goto statements. By specializing to live variables only, the program point ‘l’ will
be shared. This observation was originally made in the setting of a flow-chart language
[Gomard and Jones 1991a]. End of Example

To accomplish this, we extend the function cmixPendinsert() to take a bit-string:

cmixGoto(cmixPendinsert(label, "1001")); cmix cmixPendLoop;

where ‘"1001"’ indicates live variables.
Chapter 6 develops an in-use variable analysis that computes the desired information.

Example 3.50 The following function increments a pointer.

/* inc ptr: increment p by one */
int *int_ptr(int *p)
{

return p + 1;
}

Suppose that ‘inc ptr()’ is specialized with respect to an instance of ‘p’. Normally, both
the content and the indirection of ‘p’ will be employed to determine sharing of the residual
version of ‘int ptr()’. However, since the indirection is not used in the body, it should
not be taken into account. The in-use analysis developed in Chapter 6 recognizes such
situations. End of Example

99

www.manaraa.com

3.10.7 Heap-allocated memory

Recall that runtime memory allocation (at specialization time) is performed by the means
of the mix-function ‘alloc()’. Calls to ‘malloc()’ and its cognates are suspended.

To allow tracing of pointers pointing to heap-allocated objects, ‘alloc()’ must main-
tain a state description of the heap. Since heap-allocated data structures tend to be rather
large, copying and comparing of heap-allocated data structures should be kept to a min-
imum. We have currently no automatic strategy for when side-effects on heap allocated
objects should be allowed.

Example 3.51 Several functions in the standard library allocate memory, for instance
‘strdup()’. In some applications it is undesirable to suspend calls to memory allocating
functions. For that reason, C-Mix contains definitions of library functions which use the
‘alloc()’ function for storage allocation. End of Example

A final remark. Data structures may be circular. This further complicates both
copying, comparing and restoring, since the objects “seen” so far must be accumulated,
to prevent circular processing.

3.11 Code generation

This section briefly reconsiders code generating functions implemented by the generating-
extension library, and presents two improvements. The former gives “nicer” looking resid-
ual programs, the latter may actually improve specialization.

3.11.1 Algebraic reductions

Consider a dynamic expression such as ‘e + 0’, which is transformed into the code gener-
ating calls ‘cmixBinary(e,"+",cmixInt(0))’. (To make the example non-trivial, suppose
the 0 is the result of a complicated static evaluation.) Obviously, by implementing the
algebraic reduction e+0 = e into ‘cmixBinary’, the plus operator can be eliminated from
the residual program.47

This does not in general improve the efficiency of residual programs — a (good)
optimizing compiler will do the same kind of transformations — but yields “nicer” residual
programs. Algebraic reduction serves another purpose, though.

Example 3.52 Two useful algebraic rules are 0&&e = 0 and 1||e = 1 since they often
appear in the test of e.g. an if. Notice that the reductions are safe, since the semantics
of C guarantees that e never will be evaluated. End of Example

47Beware: the rule e ∗ 0 = 0 discards a possibly non-terminating expression!

100

www.manaraa.com

3.11.2 Deciding dynamic tests

Consider again the ‘strstr()’ example from Section 3.2, and recall that the last conjunct
in ‘--n >= needle && --h >= haystack’ was commented out to prevent the do-while
loop to become dynamic. This section shows an extension that sidesteps this problem.

Consider the specialization of a dynamic if statement. As presented in the previous
sections, both branches will always get specialized. However, it may be the case that the
test actually can be decided, even though it is dynamic.48 In that case the is no need
to specialize both branches: the transition can be compressed. This is accomplished as
follows.

An ‘if (e) S1 else S2’ statement is transformed into the following code:

if_test = e′;
if (e) switch (cmixTest(if_test)) {

S1 case 1: /* test is true */ goto m;

else
gegen
=⇒ case 0: /* test is false */ goto n;

S2 default: /* test is undecidable - specialize */
cmixIf(if_test,cmixPendinsert(m),cmixPendinsert(n));
goto cmixPendLoop;

}
m: S′1; goto l;
n: S′2; goto l;
l:;

The function ‘cmixTest()’ returns 1 if the argument is the representation of a non-zero
constant, 0, if it is the zero constant, and -1 otherwise.

Example 3.53 Applying on-line test of if expression allows the ‘strstr()’ function to
be specialized without any rewriting. End of Example

The improvement implements a “mix-line” strategy for determination of a value’s
binding time [Jones et al. 1993, Chapter 7]. It is also a first step toward positive context
propagation, which we consider in Chapter 10.

Example 3.54 This improvement has been implemented in C-Mix by a slight change of
‘cmixIf()’. If the test expression is a constant, it generates a jump to the corresponding
branch. End of Example

3.12 Domain of re-use and sharing

In the previous section we defined the predicate ‘seenB4()’ to return true on exact match.
This is often an over-strict requirement that prevents sharing of semantically equivalent
functions. This section introduces domain of re-use and lists sufficient criteria for sharing
of a specialized functions. Although the discussion is centered around function special-
ization, the techniques carry over to program point specialization.

48Recall: dynamic = possibly unknown.

101

www.manaraa.com

3.12.1 Domain of specialization

Functions are specialized with respect to values of base type, struct type, pointers, and
composed types.

Definition 3.3 The set of types of values to which functions are specialized is called the
domain of specialization.49 2

A necessary requirement for a type to be in the domain of specialization is that an
equality operator is defined over the type. For example, the higher-order partial evalua-
tors Similix [Bondorf 1990] and Schism [Consel 1993b] use representations of closures to
recognize equality of functions. All expressable values in C are comparable.

3.12.2 Domain of re-use

In this section we for convenience assume that global variables are “part” of a function’s
arguments. So far we have implicitly assumed that a residual function is shared only
when the static arguments match. In many cases, however, this is an excessively strict
criteria. Consider for example the following function,

/* choose: return x or y depending on p */
int choose(int p, int x, int y)
{

return p? x : y;
}

and assume it is specialized with respect to a static ‘p’. By strict comparison of ‘p’ to
determine sharing, we get a specialized version for every value of ‘p’. Clearly, it suffices
to construct two versions, one for ‘p’ being non-zero, and one for ‘p’ being zero.

Example 3.55 We can remedy the situation by a small trick.

/* Generating extension for choose */
Code choose(int p)
{

p = p != 0;
if (seenB4()) return name of function;
/* specialize */
...

}

The trick is to “normalize” ‘p’ before it is compared against previous values of ‘p’. Nat-
urally, this requires insight into the function. End of Example

Definition 3.4 Let f be a function taking n arguments, and assume that the first m ≤ n
are static. Let f ′ be a specialized version of f with respect an instance v1, . . . , vm. The
domain of re-use, DOR(f ′) for function f ′ is defined to be a largest set of values in
V1 × · · · × Vm such that

49Ruf uses this term equivalently to our domain of re-use [Ruf and Weise 1991]. We believe that our
terminology is more intuitive and suggestive.

102

www.manaraa.com

f(v1, . . . , vn) = v ∨ f(v1, . . . , vn) = ⊥ ⇔ f ′(vm+1, . . . , vn) = v

for all (v1, . . . , vm) ∈ V1 × · · · × Vm and all vm+1, . . . , vn in the domain of f . 2

The domain of re-use is the set of static values where a particular residual function
computes the same result for all dynamic arguments.

Example 3.56 Suppose that ‘choose()’ is specialized with respect to ‘p’ being 1, result-
ing in ‘choose p()’. We have DOR(choose p()) = {n | n 6= 0}. Notice that the domain
of re-use is defined with respect to a residual function. End of Example

When a residual call is met during specialization, and the static arguments are in the
domain of re-use of a residual function, it can be shared.

In general, the domain of re-use is uncomputable, so an approximation must do.

3.12.3 Live variables and domain of re-use

In a previous section we claimed that specialization with respect to live variables gives
better sharing.

Example 3.57 Consider the following function where the argument ‘x’ does not con-
tribute to the value returned.

int foo(int x, int y)
{

return y;
}

Suppose that ‘x’ is static. We have: DOR(foo′) = IN . If specialization performed with
respect to live variables only, the residual version will be shared for all values of ‘x’, as
desired. End of Example

The use of liveness information only yields a rude approximation of the domain of
re-use. The problem is that liveness information does not take value dependencies into
account. For example, it fails to see that the outcome of ‘x > 0’ only can be 1 or 0.

Example 3.58 Consider again the ‘inc ptr()’ function. A residual version can be
shared between calls with the same value of ‘p’ — the content of the indirection is im-
material. Classical live-variable analysis does not recognize that ‘*p’ is dead. The in-use
analysis we develop in Chapter 6 does. End of Example

103

www.manaraa.com

3.13 Specialization, sharing and unfolding

A (dynamic) function in a subject program can be handled in one of the following three
ways by specialization: i) be specialized and residual versions possibly shared; ii) be
specialized unconditionally such that no residual versions are shared, or iii) be unfolded
into the caller. As we have seen previously, the choice of treatment interacts with the
binding time classification of side-effects, and may thus influence greatly the result of
specialization.

At the time of writing we have not automated a strategy in the C-Mix system. Func-
tions are specialized and shared, unless otherwise specified by the user.50 In this section
we outline a possible strategy. It should be noted, however, that is it is easy to find
examples where the strategy fails.

3.13.1 Sharing and specialization

Recall that to share residual versions of a function, all side-effects in the function must
be suspended, the reason being that static variables otherwise may need updating after
sharing (at specialization time). If sharing is abandoned, side-effects can be allowed, but
not side-effects under dynamic control.

Example 3.59 Observe that allowing a function to accomplish a static side-effect on e.g.
a global variable implies that callers of the function also accomplish side-effects. Thus,
side-effects “back-propagate”. End of Example

Preferable residual functions should always be shared when feasible (and possible), to
reduce the size of the residual program and the risk of non-termination. In some cases,
however, static side-effects are necessary. For example, in a function initializing global
data structures, it seems permissible to allow an “init” function to side-effect since it only
will be called once, and hence no need for sharing actually exists.

Necessary requirements for unconditional specialization of a function are listed below.

• The function is non-recursive, and

• is a terminal function (i.e.calls no other functions), and

• it is “close” to the ‘main()’ function in the program’s invocations graph.

Recall that functions (possibly) referred to via a function pointer shall contain no static
side-effects. The requirements are justified as follows.

If a function is recursive folding is necessary to prevent infinite function specialization.
A function is called a terminal function if it calls no other functions. This condition is
included to reduce code duplication. Finally, the latter condition ensures that side-effects
do not back-propagate to “too many” functions in the case of a long invocation chain
(e.g. ‘main()’ calls ‘foo()’ that calls ‘bar()’ that calls ‘baz()’ which contain a side-
effect, causing ‘bar()’ and ‘foo()’ to be non-sharable).

50The C-Mix system supports the specifiers ‘specialize’ and ‘unfold’.

104

www.manaraa.com

Example 3.60 Runtime memory allocation by the means of ‘alloc()’ performs a side-
effect on the heap. By the strategy above, runtime allocation performed by (dynamic)
recursive functions will be deferred to runtime. End of Example

Chapter 6 a side-effect analysis to detect side-effects possibly under dynamic control.
Both are needed to implement the sharing strategy.

3.13.2 Unfolding strategy

An unfolding strategy must prevent infinite unfolding and avoid extensive code duplica-
tion. In the original Mix, the call unfolding was based on detection of inductive argu-
ments. Only functions with a static, inductive parameter were unfolded [Sestoft 1988].
The Scheme0 partial evaluator unfolds all calls not appearing in the branch of a dynamic
if [Jones et al. 1993]. The Similix system has a strategy where dynamic loops are broken
by insertion of so-called sp-functions (specialization functions). All calls to functions but
sp-functions are unfolded [Bondorf 1990].

At the time of writing we have implemented no unfolding strategy into C-Mix. Func-
tions are only unfolded during specialization if specified by the user via an ‘unfold’
specifier. There are three reasons to this. First, unfolding complicates the handling of
the pending list and the memory management, introducing an overhead in generating
extensions. Secondly, to prevent infinite unfold a strategy must be so conservative that
post-unfolding is needed anyway. Finally, it is undesirable to unfolding “big” functions un-
less they are called only once. However, neither the size nor the number of times a residual
function is called can be determined during specialization — first after specialization. For
these reasons it seems practical to defer all unfolding to the post-processing stage, there
more advanced decision strategies for unfolding can be employed [Hwu and Chang 1989].

Example 3.61 Inlining of function ‘foo()’ is clearly undesirable unless it is “small”.

for (n = 0; n < 100; n++) foo(n);

Notice that it may be the case that the number of (static) call-sites to a function is one,
and unfolding is undesirable anyway. End of Example

Necessary requirements for a function to be unfolded during specialization are:

• It is non-recursive, and

• cannot be called via a function pointer.

Clearly, unfolding of recursive function loops. The equivalent to Similix’s use of sp-
functions could be adapted to break loops. Functions called via function pointers must
always be specialized, and since the unfolding technique is function based, and not call-site
based, indirectly called functions cannot be unfolded.

Currently we believe that as much function unfolding as possible should be done by
post-processing, but since on-line unfolding may improve the binding time classification,
it cannot be abandoned completely.

105

www.manaraa.com

3.14 Imperfect termination

Generating extensions suffer from the same termination problems as ordinary program
specializers: they may fail to terminate on programs that normally stop. One reason is
that an extension is hyperstrict ; it “executes” both branches of a dynamic if whereas
normal execution at most executes one. Non-termination may also be due to infinite
transition compression (in the case of static loops), or simply because the subject program
loops on the given static input independently of dynamic data. A program specializer is
often accepted to loop in the latter situation, but should ideally terminate in the former
cases.

Example 3.62 A generating extension for the following lines loops.

int n;
for (n = 100; dyn-exp < n ; n--) ;

To hinder non-termination, the variable n must be generalized. End of Example

Jones has formulated a strict terminating binding-time analysis for a first-order func-
tional language based on inductive arguments [Jones 1988]. Holst has refined the termina-
tion analysis, and proved its correctness [Holst 1991]. The prevailing idea in these analyses
is that if a static value grows along a transition, another static value must decrease. This
can be computed by a dependency analysis which approximates the dependencies between
variables at each program point.

These methods seem not suitable for partial evaluation of C. The analyses rely on
downward closed domains, and can for example not handle the example above. We have
investigated some methods but have at the time of writing no solution.

3.15 Related work

The work reported in this chapter continues the endeavor on automatic specialization and
optimization of imperative programs. For a more comprehensive description we refer to
[Jones et al. 1993].

3.15.1 Partial evaluation: the beginning

Partial evaluation is the constructive realization of Kleenee’s S-m-n theorem. Where
the proof for Klenee’s theorem mainly is concerned with existence, the aim of partial
evaluation, and more general program specialization, is efficiency. Futamura formulated
the (first two) Futamura projections in 1977, but no practical experiments were conducted
[Futamura 1971].

The first experiments began with the work of Beckman et al. on the RedFun partial
evaluator [Beckman et al. 1976]. At the same time Turchin described super-compilation,
a technique that subsumes partial evaluation [Turchin 1979]. Ershov studied partial eval-
uation for small imperative languages [Ershov 1977].

106

www.manaraa.com

In 1985, Jones, Sestoft and Søndergaard developed and implemented the first self-
applicable partial evaluator for a subset of Lisp [Jones et al. 1989]. Following the same
basic principles, Bondorf and Danvy developed the Similix partial evaluator than handles
a substantial, higher-order subset of the Scheme programming language [Bondorf 1990],
and Consel developed Schism for a similar language [Consel 1993b].

3.15.2 Partial evaluation for imperative languages

Partial evaluation (or mixed computation) was originally formulated for small impera-
tive languages by Ershov and Bulyonkov [Ershov 1977,Bulyonkov and Ershov 1988]. Go-
mard and Jones developed an off-line self-applicable partial evaluator for a flow-chart
language with Lisp S-expressions as the sole data structure [Gomard and Jones 1991a,
Jones et al. 1993].

The author developed and implemented an off-line self-applicable partial evaluator for
a subset of the C programming language including functions, global variables, arrays, and
to some extent pointers [Andersen 1991,Andersen 1992,Andersen 1993b]. The specializer
kernel was successfully self-applied to generate compilers and a compiler generator.

Meyer has described on-line partial evaluator for parts of Pascal, excluding heap-
allocation and pointers [Meyer 1992]. Nirkhe and Pugh have applied a partial evaluator
for a small C-like language to hard real-time systems [Nirkhe and Pugh 1992]. Baier et
al. have developed a partial evaluator for a subset of Fortran [Baier et al. 1994]. Blazy
and Facon have taken a somewhat different approach to partial evaluation of Fortran
[Blazy and Facon 1993]. The aim is to “understand” programs by specialization to the
input of interest.

3.15.3 Generating extension generators

A main motivation in favor of generating extension as opposed to traditional special-
ization, is preservation of programs’ semantics. This issue is, however, also prevailing
in optimizing compilers that attempt compile-time evaluation of expressions. Thomp-
son suggested that compile-time expressions are executed by the underlying hardware at
compile-time, to avoid erroneous interpretations [Aho et al. 1986] — exactly as generating
extensions execute static constructs.

Beckman el al. have developed a compiler generator for a subset of the Lisp language
[Beckman et al. 1976]. The aim of the RedCompiler was to optimize compilers, but the
project was ahead of its time: a precise semantics foundation was lacking.

Ghezzi et al. study program simplification, which is a generalization of mixed compu-
tation [Ghezzi et al. 1985]. During symbolic evaluation of a program, constraints about
program predicates are collected and exploited by a expression reducer (theorem prover).
For example, in the then-branch of an if, the predicate is recorded to be true. Coen-
Porisini et al. have extended the methods further and incorporated them into Ada
[Coen-Porisini et al. 1991].

Pagan describes hand-conversions of programs into their generating extension in a Pas-
cal framework [Pagan 1990]. Mainly to overcome the problem with doubly encoded pro-

107

www.manaraa.com

grams when self-applying specializers for strongly-typed languages, Holst and Launchbury
suggested hand-writing of the compiler generator ‘cogen’ [Holst and Launchbury 1991].
A small ML-like language without side-effects was used as example language.

Birkedal and Welinder have developed a compiler generator for the Core Standard ML
language [Birkedal and Welinder 1993]. Their system does not specialize functions with
respect to higher-order values nor references and exceptions. However, specialization of
pattern matching seems to yield significant speedups.

Bondorf and Dussart have implemented a CPS-cogen for an untyped lambda calculus
[Bondorf and Dussart 1994]. The CPS-style allows, at specialization time, that static
evaluations in dynamic contexts are carried out.

A slightly different approach, deferred compilation, have been investigated by Leone
and Lee [Leone and Lee 1993]. The aim is to defer code generation to runtime, where
input is available. Function calls are compiled into calls to generating functions that
produce specialized versions of the function (in machine code). After the generating, a
jump to the to code is performed. Preliminary experiments show a speedup of more than
20 %.

3.15.4 Other transformations for imperative languages

Most program transformation techniques are formulated for functional or logic program-
ming languages, e.g. fold/unfold transformations [Burstall and Darlington 1977], super-
compilation [Turchin 1986], and finite set differencing [Cai and Paige 1993]. A fundamen-
tal reason for this is the complicated semantics of imperative languages, e.g. side-effects
and pointers.

In Chapter 10 we study driving of C, a strictly more powerful transformation than
partial evaluation.

3.16 Future work and conclusion

Although we have described transformation of the full Ansi C programming language,
there are much room for improvements.

3.16.1 Further work

Structures. In our experience, structs are the most complicated data structure to spe-
cialize. Future work include methods for passing of partially-static structs between func-
tions, and binding-time improving transformations.

Dynamic memory allocation. In this thesis we have assumed that the user identifies
runtime memory allocations, and replaces them by ‘alloc()’ calls. Preferably, of course,
the system should do this automatically. More generally, the treatment of heap-allocated
data structures should be improved.

A fruitful way to proceed may be by inferring of the structure of heap-allocated data
structures. For example, knowing that a pointer points to a singly-linked list may allow

108

www.manaraa.com

more a static binding-time separation. Manual specification of the data structures have
been proposed by Hendren [Hendren and Hummel 1992], and Klarlund and Schwartzbach
[Klarlund and Schwartzbach 1993]. We suspect that the most commonly used data struc-
tures, e.g. single and double linked list, binary trees, can be inferred automatically, and
the involved pointers annotated.

Memory mamagement. Sometimes a generating extension’s memory usage explodes.
The copying of the static part of the store at specialization points is problematic: it may
easily exhaust the memory, and slows specialization down.

A last-use analysis may be employed to free allocated memory when it is certain that
the saved state is not needed anymore. For example, if it is known that a generating
function cannot be called again, the call signature can be deleted. Further, if an analysis
can detect that “similar” calls to a function never will occur, and thus no residual functions
will be shared, the call signature can be discarded. Various techniques have been suggested
by Malmkjær, and should be investigated further [Malmkjær 1993].

Termination. The generating extensions suffer from (embarrassingly) imperfect termi-
nation properties. However, none of the existing methods for assuring termination seem
to be suitable for imperative languages. Methods for improving termination are needed.
These must probably be coupled with program transformations to avoid excessive conser-
vative binding time annotations.

Approximation of DOR. Residual code sharing the the present version of C-Mix is
poor. An analysis for approximation of the domain of re-use could improve upon this. A
possible way may be by approximation of parameter dependency on a function’s results
via a backward analysis.

Unfolding and sharing strategies. Currently, we have no good on-line unfolding
strategy nor strategy for unconditional specialization of functions. An analysis based on
a program’s invocation graph is possible.

3.16.2 Conclusion

We have developed and described a generating-extension generator for the Ansi C pro-
gramming language. The generator takes a binding-time annotated program and converts
it into a generating extension, that produces specialized versions of the original program.

A major concern in automatic program transformation is preservation of semantics.
We have argued that specialization by the means of generating extensions is superior to
traditional specialization via symbolic evaluation. Furthermore, we have described several
other advantages.

We studied specialization of pointers, structures, arrays and runtime memory alloca-
tion, and gave the generating-extension transformation of those constructs. Furthermore,
we have developed a generating-extension library implementing memory management and
code generation.

109

www.manaraa.com

Finally, we have considered propagation of partially-known information via algebraic
reductions, and reduction of if.

We have implemented the generating-extension generator into the C-Mix system.
Chapter 9 reports experimental results.

110

www.manaraa.com

Chapter 4

Pointer Analysis

We develop an efficient, inter-procedural pointer analysis for the C programming language.
The analysis approximates for every variable of pointer type the set of objects it may point
to during program execution. This information can be used to improve the accuracy of
other analyses.

The C language is considerably harder to analyze than for example Fortran and Pas-
cal. Pointers are allowed to point to both stack and heap allocated objects; the address
operator can be employed to compute the address of an object with an lvalue; type casts
enable pointers to change type; pointers can point to members of structs; and pointers to
functions can be defined.

Traditional pointer analysis is equivalent to alias analysis. For example, after an
assignment ‘p = &x’, ‘*p’ is aliased with ‘x’, as denoted by the alias pair 〈∗p, x〉. In this
chapter we take another approach. For an object of pointer type, the set of objects the
pointer may point to is approximated. For example, if in the case of the assignments ‘p
= &x; p = &y’, the result of the analysis will be a map [p 7→ {x, y}]. This is a more
economical representation that requires less storage, and is suitable for many analyses.

We specify the analysis by the means of a non-standard type inference system, which is
related to the standard semantics. From the specification, a constraint-based formulation
is derived and an efficient inference algorithm developed. The use of non-standard type
inference provides a clean separation between specification and implementation, and gives
a considerably simpler analysis than previously reported in the literature.

This chapter also presents a technique for inter-procedural constraint-based program
analysis. Often, context-sensitive analysis of functions is achieved by copying of con-
straints. This increases the number of constraints exponentially, and slows down the
solving. We present a method where constraints over vectors of pointer types are solved.
This way, only a few more constraint are generated than in the intra-procedural case.

Pointer analysis is employed in the C-Mix system to determine side-effects, which is
then used by binding-time analysis.

111

www.manaraa.com

4.1 Introduction

When the lvalue of two objects coincides the objects are said to be aliased. An alias is
for instance introduced when a pointer to a global variable is created by the means of
the address operator. The aim of alias analysis is to approximate the set of aliases at
runtime. In this chapter we present a related but somewhat different pointer analysis for
the C programming language. For every pointer variable it computes the set of abstract
locations the pointer may point to.

In languages with pointers and/or call-by-reference parameters, alias analysis is the
core part of most other data flow analyses. For example, live-variable analysis of an
expression ‘*p = 13’ must make worst-case assumptions without pointer information:
‘p’ may reference all (visible) objects, which then subsequently must be marked “live”.
Clearly, this renders live-variable analysis nearly useless. On the other hand, if it is known
that only the aliases {〈∗p, x〉 , 〈∗p, y〉} are possible, only ‘x’ and ‘y’ need to be marked
“live”.

Traditionally, aliases are represented as an equivalence relation over abstract locations
[Aho et al. 1986]. For example, the alias introduced due to the expression ‘p = &x’ is rep-
resented by the alias set {〈∗p, x〉}. Suppose that the expressions ‘q = &p; *q = &y’ are
added to the program. The alias set then becomes {〈∗p, x〉 , 〈∗q, p〉 , 〈∗ ∗ q, x〉 , 〈∗ ∗ q, y〉},
where the latter aliases are induced aliases. Apparently, the size of an alias set may evolve
rather quickly in a language with multi-level pointers such as C. Some experimental ev-
idence: Landi’s alias analysis reports more than 2,000,000 program-point specific aliases
in a 3,000 line program [Landi 1992a].

Moreover, alias sets seem excessively general for many applications. What needed is
an answer to “which objects may this pointer point to”? The analysis of this chapter
answer this question.

4.1.1 What makes C harder to analyze?

The literature contains a substantial amount of work on alias analysis of Fortran-like
languages, see Section 4.11. However, the C programming language is considerably more
difficult to analyze; some reasons for this include: multi-level pointers and the address op-
erator ‘&’, structs and unions, runtime memory allocations, type casts, function pointers,
and separate compilation.

As an example, consider an assignment ‘*q = &y’ which adds a point-to relation to p
(assuming ‘q’ points to ‘p’) even though ‘p’ is not syntactically present in the expression.
With only single-level pointers, the variable to be updated is syntactically present in the
expression.1 Further, in C it is possible to have pointers to both heap and stack allocated
objects, as opposed to Pascal that abandon the latter. We shall mainly be concerned with
analysis of pointers to stack allocated objects, due to our specific application.

A special characteristic of the C language is that implementation-defined features are
supported by the Standard. An example of this is cast of integral values to pointers.2

1It can easily be shown that call-by-reference and single-level pointers can simulate multi-level pointers.
2Recall that programs relying on implementation-defined features are non-strictly conforming.

112

www.manaraa.com

Suppose that ‘long table[]’ is an array of addresses. A cast ‘q = (int **)table[1]’
renders ‘q’ to be implementation-defined, and accordingly worst-case assumptions must
be made in the case of ‘*q = 2’.

4.1.2 Points-to analysis

For every object of pointer type we determine a safe approximation to the set of locations
the pointer may contain during program execution, for all possible input. A special case
is function pointers. The result of the analysis is the set of functions the pointer may
invoke.

Example 4.1 We represent point-to information as a map from program variables to
sets of object “names”. Consider the following program.

int main(void)
{

int x, y, *p, **q, (*fp)(char *, char *);
p = &x;
q = &p;
*q = &y;
fp = &strcmp;

}
A safe point-to map is

[p 7→ {x, y}, q 7→ {p}, fp 7→ {strcmp}]
and it is also a minimal map. End of Example

A point-to relation can be classified static or dynamic depending on its creation. In the
case of an array ‘int a[10]’, the name ‘a’ statically points to the object ‘a[]’ representing
the content of the array.3 Moreover, a pointer to a struct points, when suitable converted,
to the initial member [ISO 1990]. Accurate static point-to information can be collected
during a single pass of the program.

Point-to relations created during program execution are called dynamic. Examples
include ‘p = &x’, that creates a point-to relation between ‘p’ and ‘x’; an ‘alloc()’ call
that returns a pointer to an object, and ‘strdup()’ that returns a pointer to a string.
More general, value setting functions may create a dynamic point-to relation.

Example 4.2 A point-to analysis of the following program

char *compare(int first, char *s, char c)
{

char (*fp)(char *, char);
fp = first? &strchr : &strrchr;
return (*fp)(s,c);

}
will reveal [fp 7→ {strchr, strrchr}]. End of Example

It is easy to see that a point-to map carries the same information as an alias set, but
it is a more compact representation.

3We treat arrays as aggregates.

113

www.manaraa.com

4.1.3 Set-based pointer analysis

In this chapter we develop a flow-insensitive set-based point-to analysis implemented via
constraint solving. A set-based analysis consists of two parts: a specification and an
inference algorithm.

The specification describes the safety of a pointer approximation. We present a set
of inference rules such that a pointer abstraction map fulfills the rules only if the map is
safe. This gives an algorithm-independent characterization of the problem.

Next, we present a constraint-based characterization of the specification, and give a
constraint-solving algorithm. The constraint-based analysis works in two phases. First,
a constraint system is generated, capturing dependencies between pointers and abstract
locations. Next, a solution to the constraints is found via an iterative solving procedure.

Example 4.3 Consider again the program fragment in Example 4.1. Writing Tp for the
abstraction of ‘p’, the following constraint system could be generated:

{Tp ⊇ {x}, Tq ⊇ {p}, ∗Tq ⊇ {y}, Tfp ⊇ {strcmp}}
with the interpretation of the constraint ∗Tq ⊇ {y}: “the objects ‘q’ may point to contain
y”. End of Example

Constraint-based analysis resembles classical data-flow analysis, but has a stronger
semantical foundation. We shall borrow techniques for iterative data-flow analysis to
solve constraint systems with finite solutions [Kildall 1973].

4.1.4 Overview of the chapter

This chapter develops a flow-insensitive, context-sensitive constraint-based point-to anal-
ysis for the C programming language, and is structured as follows.

In Section 4.2 we discuss various degrees of accuracy a value-flow analysis can im-
plement: intra- and inter-procedural analysis, and flow-sensitive versus flow-insensitive
analysis. Section 4.3 considers some aspects of pointer analysis of C.

Section 4.4 specifies a sticky, flow-insensitive pointer analysis for C, and defines the
notion of safety. In Section 4.5 we give a constraint-based characterization of the problem,
and prove its correctness.

Section 4.6 extends the analysis into a context-sensitive inter-procedural analysis. A
sticky analysis merges all calls to a function, resulting in loss of precision. We present a
technique for context-sensitive constraint-based analysis based on static-call graphs.

Section 4.7 presents a constraint-solving algorithm. In Section 4.8 we discuss algorith-
mic aspects with emphasis on efficiency, and Section 4.9 documents the usefulness of the
analysis by providing some benchmarks from an existing implementation.

Flow-sensitive analyses are more precise than flow-insensitive analyses. In Section 4.10
we investigate program-point, constraint-based pointer analysis of C. We show why multi-
level pointers render this kind of analysis difficult.

Finally, Section 4.11 describe related work, and Section 4.12 presents topics for future
work and concludes.

114

www.manaraa.com

4.2 Pointer analysis: accuracy and efficiency

The precision of a value-flow analysis can roughly be characterized by two properties:
flow-sensitivity and whether it is inter-procedural vs. intra-procedural. Improved accuracy
normally implies less efficiency and more storage usage. In this section we discuss the
various degrees of accuracy and their relevance with respect to C programs.

4.2.1 Flow-insensitive versus flow-sensitive analysis

A data-flow analysis that takes control-flow into account is called flow-sensitive. Otherwise
it is flow-insensitive. The difference between the two is most conspicuous by the treatment
of if statements. Consider the following lines of code.

int x, y, *p;
if (test) p = &x; else p = &y;

A flow-sensitive analysis records that in the branches, ‘p’ is assigned the address of ‘x’ and
‘y’, respectively. After the branch, the information is merged and ‘p’ is mapped to both
‘x’ and ‘y’. The discrimination between the branches is important if they for instance
contain function calls ‘foo(p)’ and ‘bar(p)’, respectively.

A flow-insensitive analysis summarizes the pointer usage and states that ‘p’ may point
to ‘x’ and ‘y’ in both branches. In this case, spurious point-to information would be
propagated to ‘foo()’ and ‘bar()’.

The notion of flow-insensitive and flow-sensitive analysis is intimately related with the
notion of program-point specific versus summary analysis. An analysis is program-point
specific is if it computes point-to information for each program point.4 An analysis that
maintains a summary for each variable, valid for all program points of the function (or a
program, in the case of a global variable), is termed a summary analysis. Flow-sensitive
analyses must inevitably be program-point specific.

Flow-sensitive versus in-sensitive analysis is a trade off between accuracy and effi-
ciency: a flow-sensitive analysis is more precise, but uses more space and is slower.

Example 4.4 Flow-insensitive and flow-sensitive analysis.

/* Flow-insensitive */ /* Flow-sensitive */
int main(void) int main(void)
{ {

int x, y, *p; int x, y, *p;
p = &x; p = &x;
/* p 7→ { x, y } * / /* p 7→ {x} */
foo(p); foo(p);
p = &y; p = &y;
/* p 7→ { x, y } */ /* p 7→ {y} */

} }

4The analysis does not necessarily have to compute the complete set of pointer variable bindings; only
at “interesting” program points.

115

www.manaraa.com

Notice that in the flow-insensitive case, the spurious point-to information p 7→ {y} is
propagated into the function ‘foo()’. End of Example

We focus on flow-insensitive (summary) pointer analysis for the following reasons.
First, in our experience, most C programs consist of many small functions.5 Thus, the ex-
tra approximation introduced by summarizing all program points appears to be of minor
importance. Secondly, program-point specific analyses may use an unacceptable amount
of storage. This, pragmatic argument matters when large programs are analyzed. Thirdly,
our application of the analysis does not accommodate program-point specific information,
e.g. the binding-time analysis is program-point insensitive. Thus, flow-sensitive pointer
analysis will not improve upon binding-time separation (modulo the propagation of spu-
rious information — which we believe to be negligible).

We investigate program-point specific pointer analysis in Section 4.10.

4.2.2 Poor man’s program-point analysis

By a simple transformation it is possible to recover some of the accuracy of a program-
point specific analysis, without actually collecting information at each program point.

Let an assignment e1 = e2, where e1 is a variable and e2 is independent from pointer
variables, be called an initialization assignment. The idea is to rename pointer variables
when they are initialized.

Example 4.5 Poor man’s flow-sensitive analysis of Example 4.4. The variable ‘p’ has
been “copied” to ‘p1’ and ‘p2’.

int main(void)
{

int x, y, *p1, *p2;
p1 = &x;
/* p1 7→ {x} */
foo(p1);
p2 = &y;
/* p2 7→ {y} */

}

Renaming of variables can clearly be done automatically. End of Example

The transformation fails on indirect initializations, e.g. an assignment ‘*q = &x;’,
where ‘q’ points to a pointer variable.6

4.2.3 Intra- and inter-procedural analysis

Intra-procedural analysis is concerned with the data flow in function bodies, and makes
worst-call assumption about function calls. In this chapter we shall use ‘intra-procedural’
in a more strict meaning: functions are analysed context-independently. Inter-procedural

5As opposed to Fortran, that tends to use “long” functions.
6All flow-sensitive analyses will gain from this transformation, including binding-time analysis.

116

www.manaraa.com

?

?

?

?

?
¾

??
¾

main(void)

px = foo(&x)

py = foo(&y)

return 0

foo(int *p)

...

return

Figure 34: Inter-procedural call graph for program in Example 4.6

analysis infers information under consideration of call contexts. Intra-procedural anal-
ysis is also called monovariant or sticky, and inter-procedural analysis is also known as
polyvariant.

Example 4.6 Consider the following program.

int main(void) int *foo(int *p)
{ {

int x,y,*px,*py; ...
px = foo(&x); return p;
py = foo(&y); }
return 0;

}
An intra-procedural analysis merges the contexts of the two calls and computes the point-
to information [px, py 7→ {x, y}]. An inter-procedural analysis differentiates between to
two calls. Figure 34 illustrates the inter-procedural call graph. End of Example

Inter-procedural analysis improves the precision of intra-procedural analysis by pre-
venting calls to interfere. Consider Figure 34 that depicts the inter-procedural call graphs
of the program in Example 4.6. The goal is that the value returned by the first call is not
erroneous propagated to the second call, and vice versa. Information must only be propa-
gated through valid or realizable program paths [Sharir and Pnueli 1981]. A control-path
is realizable when the inter-procedural exit-path corresponds to the entry path.

4.2.4 Use of inter-procedural information

Inter-procedural analysis is mainly concerned with the propagation of value-flow infor-
mation through functions. Another aspect is the use of the inferred information, e.g.
for optimization, or to drive other analyses. Classical inter-procedural analyses produce
a summary for each function, that is, all calls are merged. Clearly, this degrades the
number of possible optimizations.

Example 4.7 Suppose we apply inter-procedural constant propagation to a program
containing the calls ‘bar(0)’ and ‘bar(1)’. Classical analysis will merge the two calls and
henceforth classify the parameter for ‘non-const’, ruling out e.g. compile-time execution
of an if statement [Callahan et al. 1986]. End of Example

117

www.manaraa.com

An aggressive approach would be either to inline functions into the caller or to
copy functions according to their use. The latter is also known as procedure cloning
[Cooper et al. 1993,Hall 1991].

We develop a flexible approach where each function is annotated with both context
specific information and a summary. At a later stage the function can then be cloned, if
so desired. We return to this issue in Chapter 6, and postpone the decision whether to
clone a function or not.7

We will assume that a program’s static-call graph is available. Recall that the static-
call graph approximates the invocation of functions, and assigns a variant number to
functions according to the call contexts. For example, if a function is called in n contexts,
the function has n variants. Even though function not are textually copied according to
contexts, it is useful to imagine that n variants of the function’s parameters and local
variables exist. We denote by vi the variable corresponding to the i’th variant.

4.2.5 May or must?

The certainty of a pointer abstraction can be characterized by may or must. A may
point-to analysis computes for every pointer set of abstract locations that the pointer
may point to at runtime. A must point-to analysis computes for every pointer a set of
abstract locations that the pointer must point to.

May and must analysis is also known as existential and universal analysis. In the
former case, there must exists a path where the point-to relation is valid, in the latter
case the point-to relation must be valid on all paths.

Example 4.8 Consider live-variable analysis of the expression ‘x= *p’. Given must
point-to information [p 7→ {y}], ‘y’ can be marked “live”. On the basis of may point
to information [p 7→ {y, z}], both ‘y and ‘z’ must be marked “live”. End of Example

We shall only consider may point-to analysis in this chapter.

4.3 Pointer analysis of C

In this section we briefly consider pointer analysis of some of the more intricate features
of C such separate compilation, external variables and non-strictly complying expressions,
e.g. type casts, and their interaction with pointer analysis.

4.3.1 Structures and unions

C supports user-defined structures and unions. Recall from Section 2.3.3 that struct
variables sharing a common type definition are separated (are given different names)
during parsing. After parsing, a value-flow analysis unions (the types of) objects that
(may) flow together.

7Relevant information includes number of calls, the size of the function, number of calls in the
functions.

118

www.manaraa.com

Example 4.9 Given definitions ‘struct S { int *p;} s,t,u;’, variants of the struct
type will be assigned to the variables, e.g. ‘s’ will be assigned the type ‘struct S1’.
Suppose that the program contains the assignment ‘t = s’. The value-flow analysis will
then merge the type definitions such that ‘s’ and ‘t’ are given the same type (‘struct
S1’, say), whereas ‘u’ is given the type ‘struct S3’, say. End of Example

Observe: struct variables of different type cannot flow together. Struct variables of the
same type may flow together. We exploit this fact the following way.

Point-to information for field members of a struct variable is associated with the
definition of a struct; not the struct objects. For example, the point to information for
member ‘s.p’ (assuming the definitions from the Example above) is represented by ‘S1.p’,
where ‘S1’ is the “definition” of ‘struct S1’. The definition is common for all objects of
that type. An important consequence: in the case of an assignment ‘t = s’, the fields of
‘t’ do not need to be updated with respect to ‘s’ — the value-flow analysis have taken
care of this.

Hence, the pointer analysis is factorized into the two sub-analyses

1. a (struct) value-flow analysis, and

2. a point-to propagation analysis

where this chapter describes the propagation analysis. We will (continue to) use the term
pointer analysis for the propagation analysis.

Recall from Chapter 2 that some initial members of unions are truly shared. This is
of importance for pointer analysis if the member is of pointer type. For simplicity we we
will not take this aspect into account. The extension is straightforward, but tedious to
describe.

4.3.2 Implementation-defined features

A C program can comply to the Standard in two ways. A strictly conforming program
shall not depend on implementation-defined behavior but a conforming program is allowed
to do so. In this section we consider type casts that (in most cases) are non-strictly
conforming.

Example 4.10 Cast of an integral value to a pointer or conversely is an implementation-
defined behaviour. Cast of a pointer to a pointer with less alignment requirement and
back again, is strictly conforming [ISO 1990]. End of Example

Implementation-defined features cannot be described accurately by an architecture-
independent analysis. We will approximate pointers that may point to any object by the
unique abstract location ‘Unknown’.

Definition 4.1 Let ‘p’ be a pointer. If a pointer abstraction maps ‘p’ to Unknown,
[p 7→ Unknown], when ‘p’ may point to all accessible objects at runtime. 2

The abstract location ‘Unknown’ corresponds to “know nothing”, or “worst-case”.

119

www.manaraa.com

Example 4.11 The goal parameters of a program must be described by ‘Unknown’, e.g.
the ‘main’ function

int main(int argc, char **argv)
{ ... }

is approximated by [argv 7→ {Unknown}]. End of Example

In this chapter we will not consider the setjmp’ and ‘longjmp’ macros.

4.3.3 Dereferencing unknown pointers

Suppose that a program contains an assignment through an Unknown pointer, e.g. ‘*p
= 2’, where [p 7→ {Unknown}]. In the case of live-variable analysis, this implies that
worst-case assumptions must be made. However, the problem also affects the pointer
analysis.

Consider an assignment ‘*q = &x’, where ‘q’ is unknown. This implies after the as-
signment, all pointers may point to ‘x’. Even worse, an assignment ‘*q = p’ where ‘p’ is
unknown renders all pointers unknown.

We shall proceed as follows. If the analysis reveals that an Unknown pointer may
be dereferenced in the left hand side of an assignment, the analysis stops with “worst-
case” message. This corresponds to the most inaccurate pointer approximation possible.
Analyses depending on pointer information must make worst-case assumptions about the
pointer usage.

For now we will assume that Unknown pointers are not dereferenced in the left hand
side of an assignment. Section 4.8 describes handling of the worst-case behaviour.

4.3.4 Separate translation units

A C program usually consists of a collection of translation units that are compiled sepa-
rately and linked to an executable. Each file may refer to variables defined in other units
by the means of ‘extern’ declarations. Suppose that a pointer analysis is applied to a
single module.

This has two consequences. Potentially, global variables may be modified by assign-
ments in other modules. To be safe, worst-case assumptions, i.e. Unknown, about global
variables must be made. Secondly, functions may be called from other modules with
unknown parameters. Thus, to be safe, all functions must be approximated by Unknown.

To obtain results other than trivial we shall avoid separate analysis, and assume that
“relevant” translation units are merged; i.e. we consider solely monolithic programs. The
subject of Chapter 7 is separate program analysis, and it outlines a separate pointer
analysis based on the development in this chapter.

Constraint 4.1 i) No global variables of pointer type may be modified by other units.
ii) Functions are assumed to be static to the translation unit being analyzed.

It is, however, convenient to sustain the notion of an object being “external”. For
example, we will describe the function ‘strdup()’ as returning a pointer to an ‘Unknown’
object.

120

www.manaraa.com

4.4 Safe pointer abstractions

A pointer abstraction is a map from abstract program objects (variables) to sets of abstract
locations. An abstraction is safe if for every object of pointer type, the set of concrete
addresses it may contain at runtime is safely described by the set of abstract locations.
For example, if a pointer ‘p’ may contain the locations lx (location of ‘x’) and lg (location
of ‘g’) at runtime, a safe abstraction is p 7→ {x, g}.

In this section we define abstract locations and make precise the notion of safety.
We present a specification that can be employed to check the safety of an abstraction.
The specification serves as foundation for the development of a constraint-based pointer
analysis.

4.4.1 Abstract locations

A pointer is a variable containing the distinguished constant ‘NULL’ or an address. Due
to casts, a pointer can (in principle) point to an arbitrary address. An object is a set
of logically related locations, e.g. four bytes representing an integer value, or n bytes
representing a struct value. Since pointers may point to functions, we will also consider
functions as objects.

An object can either be allocated on the program stack (local variables), at a fixed
location (strings and global variables), in the code space (functions), or on the heap
(runtime allocated objects). We shall only be concerned with the run time allocated
objects brought into existence via ‘alloc()’ calls. Assume that all calls are labeled
uniquely.8 The label l of an ‘allocl()’ is used to denote the set of (anonymous) objects
allocated by the ‘allocl()’ call-site. The label l may be thought of as a pointer of a
relevant type.

Example 4.12 Consider the program lines below.

int x, y, *p, **q, (*fp)(void);
struct S *ps;
p = &x;
q = &p;
*q = &y;
fp = &foo;
ps = alloc1(S);

We have: [p 7→ {x, y}, q 7→ {p}, fp 7→ {foo}, ps 7→ {1}]. End of Example

Consider an application of the address operator &. Similar to an ‘alloc()’ call, it
“returns” a pointer to an object. To denote the set of objects the application “returns”,
we assume assume a unique labeling. Thus, in ‘p = &2x’ we have that ‘p’ points to the
same object as the “pointer” ‘2’, that is, x.

Definition 4.2 The set of abstract locations ALoc is defined inductively as follows:

8Objects allocated by the means of ‘malloc’ are considered ‘Unknown’.

121

www.manaraa.com

• If v is the name of a global variable: v ∈ ALoc.

• If v is a parameter of some function with n variants: vi ∈ ALoc, i = 1, . . . , n.

• If v is a local variable in some function with n variants: vi ∈ ALoc, i = 1, . . . , n.

• If s is a string constant: s ∈ ALoc.

• If f is the name of a function with n variants: f i ∈ ALoc, i = 1, . . . , n.

• If f is the name of a function with n variants: f i
0 ∈ ALoc, i = 1, . . . , n.

• If l is the label of an alloc in a function with n variants: li ∈ ALoc, i = 1, . . . , n.

• If l is the label of an address operator in a function with n variants: li ∈ ALoc.

• If o ∈ ALoc denotes an object of type “array”: o[] ∈ ALoc.

• If S is the type name of a struct or union type: S ∈ ALoc.

• If S ∈ ALoc is of type “struct” or “union”: S.i ∈ ALoc for all fields i of S.

• Unknown ∈ ALoc.

Names are assumed to be unique. 2

Clearly, the set ALoc is finite for all programs. The analysis maps a pointer into an
element of the set ℘(ALoc). The element Unknown denotes an arbitrary (unknown)
address. This means that the analysis abstracts as follows.

Function invocations are collapsed according to the program’s static-call graph (see
Chapter 2). This means for a function f with n variants, only n instances of parameters
and local variables are taken into account. For instance, due to the 1-limit imposed on
recursive functions, all instances of a parameters in a recursive function invocation chain
are identified. The location f0 associated with function f denotes an abstract return
location, i.e. a unique location where f “delivers” its result value.

Arrays are treated as aggregates, that is, all entries are merged. Fields of struct
objects of the same name are merged, e.g. given definition ‘struct S { int x;} s,t’,
fields ‘s.x’ and ‘t.x’ are collapsed.

Example 4.13 The merging of struct fields may seen excessively conservatively. How-
ever, recall that we assume programs are type-separated during parsing, and that a value-
flow analysis is applied that identifier the type of struct objects that (may) flow together,
see Section 2.3.3. End of Example

The unique abstract location Unknown denotes an arbitrary, unknown address, which
both be valid or illegal.

Even though the definition of abstract locations actually is with respect to a particular
program, we will continue to use ALoc independently of programs. Furthermore, we
will assume that the type of the object, an abstract location denotes, is available. For
example, we write “if S ∈ ALoc is of struct type”, for “if the object S ∈ ALoc denotes
is of struct type”. Finally, we implicitly assume a binding from a function designator to
the parameters. If f is a function identifier, we write f :xi for the parameter xi of f .

122

www.manaraa.com

4.4.2 Pointer abstraction

A pointer abstraction S̃ : ALoc → ℘(ALoc) is a map from abstract locations to sets of
abstract locations.

Example 4.14 Consider the following assignments.

int *p, *q;
extern int *ep;
p = (int *)0xabcd;
q = (int *)malloc(100*sizeof(int));
r = ep;

The pointer ‘p’ is assigned a value via a non-portable cast. We will approximate this by
Unknown. Pointer ‘q’ is assigned the result of ‘malloc()’. In general, pointers returned
by external functions are approximated by Unknown. Finally, the pointer ‘r’ is assigned
the value of an external variable. This is also approximated by Unknown.

A refinement would be to approximate the content of external pointers by a unique
value Extern. Since we have no use for this, besides giving more accurate warning mes-
sages, we will not pursue this. End of Example

A pointer abstraction S̃ must fulfill the following requirements which we justify below.

Definition 4.3 A pointer abstraction S̃ : ALoc → ℘(ALoc) is a map satisfying:

1. If o ∈ ALoc is of base type: S̃(o) = {Unknown}.
2. If s ∈ ALoc is of struct/union type: S̃(s) = {}.
3. If f ∈ ALoc is a function designator: S̃(f) = {}.
4. If a ∈ ALoc is of type array: S̃(a) = {a[]}.
5. S̃(Unknown) = Unknown.

2

The first condition requires that objects of base types are abstracted by Unknown.
The motivation is that the value may be cast into a pointer, and is hence Unknown (in
general). The second condition stipulates that the abstract value of a struct object is the
empty set. Notice that a struct object is uniquely identified its type. The fourth condition
requires that an array variable points to the content.9 Finally, the content of an unknown
location is unknown.

Define for s ∈ ALoc\{Unknown} : {s} ⊆ {Unknown}. Then two pointer abstractions
are ordered by set inclusion. A program has a minimal pointer abstraction. Given a
program, we desire a minimal safe pointer abstraction.

9In reality, ‘a’ in ‘a[10]’ is not an lvalue. It is, however, convenient to consider ‘a’ to be a pointer to
the content.

123

www.manaraa.com

4.4.3 Safe pointer abstraction

Intuitively, a pointer abstraction for a program is safe if for all input, every object a
pointer may point to at runtime is captured by the abstraction.

Let the abstraction function α : Loc → ALoc be defined the obvious way. For example,
if lx is the location of parameter ‘x’ in an invocation of a function ‘f’ corresponding to
the i’th variant, then α(lx) = xi. An execution path from the initial program point p0

and an initial program store S0 is denoted by

〈p0,S0〉 → · · · → 〈pn,Sn〉
where Sn is the store at program point pn.

Let p be a program and S0 an initial store (mapping the program input to the param-
eters of the goal function). Let pn be a program point, and Ln the locations of all visible
variables. A pointer abstraction S̃ is safe with respect to p if

l ∈ Ln : α(Sn(l)) ⊆ S̃(α(l))

whenever 〈p0,S0〉 → · · · → 〈pn,Sn〉.
Every program has a safe pointer abstraction. Define S̃triv such that it fulfills Defini-

tion 4.3, and extend it such that for all o ∈ ALoc where o is of pointer type, S̃triv(o) =
{Unknown}. Obviously, it is a safe — and useless — abstraction.

The definition of safety above considers only monolithic programs where no external
functions nor variables exist. We are, however, interested in analysis of translation units
where parts of the program may be undefined.

Example 4.15 Consider the following piece of code.

extern int *o;
int *p, **q;
q = &o;
p = *q;

Even though ‘o’ is an external variable, it can obviously be established that [q 7→ {o}].
However, ‘p’ must inevitably be approximated by [p 7→ {Unknown}]. End of Example

Definition 4.4 Let p ≡ m1, . . . , mm be a program consisting of the modules mi. A pointer
abstraction S̃ is safe for mi0 if for all program points pn and initial stores S0 where
〈p0,S〉 → · · · → 〈pn,Sn〉, then:

• for l ∈ Ln: α(Sn(l)) ⊆ S̃(α(l)) if l is defined in mi0,

• for l ∈ Ln: S̃(l) = {Unknown} if l is defined in mi 6= mi0

where Ln is the set of visible variables at program point n. 2

For simplicity we regard a[], given an array a, to be a “visible variable”, and we regard
the labels of ‘alloc()’ calls to be “pointer variables.

124

www.manaraa.com

Example 4.16 Suppose that we introduced an abstract location Extern to denote the
contents of external variables. Example 4.15 would then be abstracted by: [p 7→ Extern].
There is no operational difference between Extern and Unknown. End of Example

We will compute an approximation to a safe pointer abstraction. For example, we ab-
stract the result of an implementation-defined cast, e.g. ‘(int *)x’ where ‘x’ is an integer
variable, by Unknown, whereas the definition may allow a more accurate abstraction.

4.4.4 Pointer analysis specification

We specify a flow-insensitive (summary), intra-procedural pointer analysis. We postpone
extension to inter-procedural analysis to Section 4.6.

The specification can be employed to check that a given pointer abstraction S̃ is safe for
a program. Due to lack of space we only present the rules for declarations and expressions
(the interesting cases) and describe the other cases informally. The specification is in the
form of inference rules S̃ ` p : •.

We argue (modulo the omitted part of the specification) that if the program fulfills
the rules in the context of a pointer abstraction S̃, then S̃ is a safe pointer abstraction.
Actually, the rules will also fail if S̃ is not a pointer abstraction, i.e. does not satisfy
Definition 4.3. Let S̃ be given.

Suppose that d ≡ x : T is a definition (i.e., not an ‘extern’ declaration). The safety
of S̃ with respect to d depends on the type T .

Lemma 4.1 Let d ∈ Decl be a definition. Then S̃ : ALoc → ℘(ALoc) is a pointer
abstraction with respect to d if

S̃ `pdecl d : •
where `pdecl is defined in Figure 35, and S̃(Unknown) = {Unknown}.

Proof It is straightforward to verify that Definition 4.3 is fulfilled. 2

To the right of Figure 35 the rules for external variables are shown. Let d ≡ x : T
be an (extern) declaration. Then S̃ is a pointer abstraction for d if S̃ `petype 〈T, l〉 : •.
Notice the rules require external pointers to be approximated by Unknown, as stipulated
by Definition 4.4.

The (omitted) rule for function definitions Tf f(di){dj Sk} (would) require S̃(f) =
{f0}.

Since we specify a flow-insensitive analysis, the safety of a pointer abstraction with
respect to an expression e is independent of program points. A map S̃ : ALoc → ℘(ALoc)
is a pointer abstraction with respect to an expression e, if it is a pointer abstraction with
respect to the variables occurring in e.

Lemma 4.2 Let e ∈ Expr be an expression and S̃ a pointer abstraction with respect to
e. Then S̃ is safe provided there exist V ∈ ℘(ALoc) such

125

www.manaraa.com

[decl]
`ctype 〈T, x〉 : •
`ptype d : • d ≡ x : T

`petype 〈T, x〉 : •
`pdecl extern x : T : • d ≡ x : T

[base]
S̃(l) = {Unknown}
S̃ `ptype 〈〈τb〉 , l〉 : •

S̃(l) = {Unknown}
S̃ `petype 〈〈τb〉 , l〉 : •

[struct]
S̃(l) = {}
S̃ `ptype 〈〈struct S〉 , l〉 : •

S̃(l) = {Unknown}
S̃ `petype 〈〈struct S〉 , l〉 : •

[union]
S̃(l) = {}
S̃ `ptype 〈〈union U〉 , l〉 : •

S̃(l) = {Unknown}
S̃ `petype 〈〈union U〉 , l〉 : •

[ptr] `ptype 〈〈∗〉T, l〉 : • S̃(l) = {Unknown}
S̃ `ptype 〈〈∗〉T, l〉 : •

[array] `ptype 〈T, l[]〉 : • S̃(l) = {l[]}
`ptype 〈〈[n]〉T, l〉 : •

`petype 〈T, l[]〉 : • S̃(l) = {l[]}
`petype 〈〈[n]〉T, l〉 : •

[fun] `ptype 〈〈(di)T 〉 , l〉 : • `ptype 〈〈(di)T 〉 , l〉 : •

Figure 35: Pointer abstraction for declarations

S̃ `pexp e : V

where `pexp is defined in Figure 36.

Intuitively, the the rules infer the lvalues of the expression e. For example, the lvalue
of a variable v is {v}; recall that we consider intra-procedural analysis only.10

An informal justification of the lemma is given below. We omit a formal proof.

Justification A formal proof would be by induction after “evaluation length”. We
argue that if S̃ is safe before evaluation of e, it is also safe after.

A constant has an Unknown lvalue, and the lvalue of a string is given by its name. The
motivation for approximating the lvalue of a constant by Unknown, rather than the empty
set, if obvious from the following example: ‘p = (int *)12’. The lvalue of a variable is
approximated by its name.

Consider a struct indexing e.i. Given the type S of the objects the subexpression
denotes, the lvalues of the fields are S.i. The rules for pointer dereference and array
indexing use the pointer abstraction to describe the lvalue of the dereferenced objects.
Notice: if ‘p’ points to ‘x’, that is S̃(p) = {x}, when the lvalue of ‘*p’ is the lvalue of
‘x’ which is approximated by {x}. The rule for the address operator uses the label as a
“placeholder” for the indirection created.

The effect of unary and binary operator applications is described by the means of
Õ : Op× ℘(ALoc)∗ → ℘(ALoc). We omit a formal specification.

Example 4.17 Suppose that ‘p’ and ‘q’ both point to an array and consider pointer
subtraction ‘p - q’.11 We have Õ(−∗int,∗int, {p}, {q}) = {Unknown} since the result is
an integer. Consider now ‘p - 1’. We then get Õ(−∗int,int, {p}, {Unknown}) = {p} since
pointer arithmetic is not allowed to shuffle a pointer outside an array. End of Example

10That is, there is one “variant” of each function.
11Recall that operator overloading is assumed resolved during parsing.

126

www.manaraa.com

An external function delivers its result in an unknown location (and the result itself
is unknown).

Consider the rules for functions calls. The content of the argument’s abstract lvalue
must be contained in the description of the formal parameters.12 The result of the appli-
cation is returned in the called function’s abstract return location. In the case of indirect
calls, all possible functions are taken into account.

Example 4.18 In case of the program fragment

int (*fp)(int), x;
fp = &foo;
fp = &bar;
(*fp)(&x)

where ‘foo()’ and ‘bar()’ are two functions taking an integer pointer as a parameter, we
have:

[fp 7→ {foo, bar}]
due to the first two applications of the address operator, and

[foo:x 7→ {x}, bar:x 7→ {x}]
due to the indirect call. The ‘lvalue’ of the call is {foo0, bar0}. End of Example

The rules for pre- and post increment expressions are trivial.
Consider the rule for assignments. The content of locations the left hand side must

contain the content of the right hand side expression. Recall that we assume that no
Unknown pointers are dereferenced.

Example 4.19 Consider the following assignments

extern int **q;
int *p;
*q = p;

Since ‘q’ is extern, it is Unknown what it points to. Thus, the assignment may assign
the pointer ‘p’ to an Unknown object (of pointer type). This extension is shown in
Section 4.3.3. End of Example

The abstract lvalue of a comma expression is determined by the second subexpression.
A sizeof expression has no lvalue and is approximated by Unknown.

Finally, consider the rule for casts. It uses the function Cast : Type × Type ×
℘(ALoc) → ℘(ALoc) defined as follows.

12Recall that we consider intra-procedural, or sticky analysis.

127

www.manaraa.com

[const] S̃ `pexp c : {Unknown}
[string] S̃ `pexp s : {s}
[var] S̃ `pexp v : {v}
[struct]

S̃ `pexp e1 : O1 TypOf(o ∈ O1) = 〈struct S〉
S̃ `pexp e1.i : {S.i}

[indr]
S̃ `pexp e1 : O1

S̃ `pexp *e1 :
⋃

o∈O1
S̃(o)

[array]
S̃ `pexp e1 : O1 S̃ `pexpr e2 : O2

S̃ `pexp e1[e2] :
⋃

o∈O1
S̃(o)

[address]
S̃ `pexp e1 : O1 S̃(l) ⊇ O1

S̃ `pexp &le1 : {l}

[unary]
S̃ `pexp e1 : O1

S̃ `pexp o e1 : Õ(o,O1)

[binary]
S̃ `pexp ei : Oi

S̃ `pexp e1 op e2 : Õ(o, Oi)

[alloc] S̃ `pexp allocl(T) : {l}

[extern]
S̃ `pexp ei : Oi

S̃ `pexp ef(e1,. . . ,en) : {Unknown}

[user]
S̃ `pexp ei : Oi S̃(f :xi) ⊇ S̃(Oi)
S̃ `pexp f(e1,. . . ,en) : S̃(f0)

[call]
S̃ `pexp e0 : O0 ∀o ∈ O0 : S̃(o :xi) ⊇ S̃(Oi)
S̃ `pexp e0(e1, . . . , en) :

⋃
o∈O0

S̃(o0)

[preinc]
S̃ `pexp e1 : O1

S̃ `pexp ++e1 : O1

[postinc]
S̃ `pexp e1 : O1

S̃ `pexp e1++ : O1

[assign]
S̃ `pexp e1 : O1 S̃ `pexp e2 : O2 ∀o ∈ O1 : S̃(o) ⊇ S̃(O2)
S̃ `pexp e1 aop e2 : O2

[comma]
S̃ `pexp e1 : O1 S̃ `pexp e2 : O2

S̃ `pexp e1, e2 : O2

[sizeof] S̃ `pexp sizeof(T) : {Unknown}
[cast]

S̃ `pexp e1 : O1

S̃ `pexp (T)e1 : Cast(T, TypOf(e1), O1)

Figure 36: Pointer abstraction for expressions

128

www.manaraa.com

Cast(Tto, Tfrom, Ofrom) = case (Tto, Tfrom) of
(〈τb〉 , 〈τ ′b〉) : Ofrom

(〈∗〉T, 〈τb〉) : {Unknown}
(〈τb〉 , 〈∗〉T) : {Unknown}
(〈∗〉T, 〈∗〉 〈struct S〉) :

{
{o.1 | o ∈ Ofrom} T type of first member of S
Ofrom Otherwise

(〈∗〉T ′, 〈∗〉T ′′) : Ofrom

Casts between base types do not change an object’s lvalue. Casts from a pointer type
to an integral type, or the opposite, is implementation-defined, and approximated by
Unknown.

Recall that a pointer to a struct object points, when suitably converted, also to the
first member. This is implemented by the case for cast from struct pointer to pointer.
We denote the name of the first member of S by ‘1’. Other conversions do not change
the lvalue of the referenced objects. This definition is in accordance with the Standard
[ISO 1990, Paragraph 6.3.4]. End of Justification

The specification of statements uses the rules for expressions. Further, in the case of
a ‘return e’:

S̃ `pexp e : O S̃(f0) ⊇ S̃(O)

S̃ `pstmt return e : •
which specifies that the abstract return location of function f (encapsulating the state-
ment) must containt the value of the expression e.

We conjecture that given a program p and a map S̃ : ALoc → ℘(ALoc), then S̃ is a
safe pointer abstraction for p iff the rules are fulfilled.

4.5 Intra-procedural pointer analysis

This section presents a constraint-based formulation of the pointer analysis specification.
The next section extends the analysis to an inter-procedural analysis, and Section 4.7
describes constraint solving.

4.5.1 Pointer types and constraint systems

A constraint system is defined as a set of constraints over pointer types. A solution to a
constraint system is a substitution from pointer type variables to sets of abstract locations,
such that all constraints are satisfied.

The syntax of a pointer type T is defined inductively by the grammar

T ::= {oj} locations
| ∗T deference
| T .i indexing
| (T) → T function
| T type variable

129

www.manaraa.com

where oj ∈ ALoc and i is an identifier. A pointer type can be a set of abstract locations,
a dereference type, an indexing type, a function type, or a type variable. Pointer types
{oj} are ground types. We use T to range over pointer types.

To every object o ∈ ALoc of non-functional type we assign a type variable To; this
includes the abstract return location f0 for a function f . To every object f ∈ ALoc of
function type we associate the type (Td) → Tf0 , where Td are the type variables assigned
to parameters of f . To every type specifier τ we assign a type variable Tτ .

The aim of the analysis is to instantiate the type variables with an element from
℘(ALoc), such that the map [o 7→ To] becomes a safe pointer abstraction.

A variable assignment is a substitution S : TVar → PType from type variables to
ground pointer types. Application of a substitution S to a type T is denoted by juxtapo-
sition S · T . The meaning of a pointer type is defined relatively to a variable assignment.

Definition 4.5 Suppose that S is a variable assignment. The meaning of a pointer type
T is defined by

[[O]] S = O
[[∗T]] S =

⋃
o STo, o ∈ [[T]] S

[[T .i]] S =
⋃

o{S(U.i) | TypOf(o) = 〈struct U〉} o ∈ [[T]] S
[[(Ti) → T]] S = ([[Ti]] S) → [[T]] S
[[T]] S = ST

where To is the unique type variable associated with object o. 2

The meaning of a deference type ∗T is determined by the variable assignment. Intu-
itively, if T denotes objects {oi}, the meaning is the contents of those objects: SToi

. In
the case of an indexing T .i, the meaning equals content of the fields of the object(s) T
denote.

A constraint system is a multi-set of formal inclusion constraints

T ⊇ T
over pointer types T . We use C to denote constraint systems.

A solution to a constraint system C is a substitution S : TVar → PType from type
variables to ground pointer types which is the identity on variables but those occurring
in C, such that all constraints are satisfied.

Definition 4.6 Define the relation ⊇∗ by O1 ⊇∗ O2 iff O1 ⊇ O2 for all O1, O2 ∈ ℘(ALoc),
and (Ti) → T ⊇∗ (T ′

i) → T ′ iff Ti ⊇∗ T ′
i and T ′ ⊇∗ T .

A substitution S : TVar → PType solves a constraint T1 ⊇ T2 if it is a variable
assignment and [[T]] S ⊇∗ [[T]] S. 2

Notice that a function type is contra-variant in the result type. The set of solutions
to a constraint system C is denoted by Sol(C). The constraint systems we will consider
all have at least one solution.

Order solutions by subset inclusion. Then a constraint system has a minimal solution,
which is a “most” accurate solution to the pointer analysis problem.

130

www.manaraa.com

4.5.2 Constraint generation

We give a constraint-based formulation of the pointer analysis specification from the
previous section.

Definition 4.7 Let p = 〈T ,D,F〉 be a program. The pointer-analysis constraint system
Cpgm(p) for p is defined by

Cpgm(p) =
⋃

t∈T
Ctdef (t) ∪

⋃

d∈D
Cdecl(d) ∪ ⋃

f∈F
Cfun(f) ∪ Cgoal(p)

where the constraint generating functions are defined below. 2

Below we implicitly assume that the constraint Tunknown ⊇ {Unknown} is included in
all constraint systems. It implements Condition 5 in Definition 4.3 of pointer abstraction.

Goal parameters

Recall that we assume that only a “goal” function is called from the outside. The content
of the goal function’s parameters is unknown. Hence, we define

Cgoal(p) =
⋃{Tx ⊇ {Unknown}}

for the goal parameters x : T of the goal function in p.

Example 4.20 For the main function ‘int main(int argc, char **argv)’ we have:

Cgoal = {Targc ⊇ {Unknown}, Targv ⊇ {Unknown}}
since the content of both is unknown at program start-up. End of Example

Declaration

Let d ∈ Decl be a declaration. The constraint system Cdecl(d) for d is defined by Figure 37.

Lemma 4.3 Let d ∈ Decl be a declaration. Then Cdecl(d) has a solution S, and

S|ALoc `pdecl d : •

where `pdecl is defined by Figure 35.

Proof To see that the constraint system Cdecl(d) has a solution, observe that the trivial
substitution Striv is a solution.

It is easy to see that a solution to the constraint system is a pointer abstraction, cf.
proof of Lemma 4.1. 2

131

www.manaraa.com

[decl]
`ctype 〈T, x〉 : Tt

`cdecl x : T : Tx
{Tx ⊇ Tt} `cetype 〈T, x〉 : Tt

`cdecl extern x : T : Tx
{Tx ⊇ Tt}

[base] `ctype 〈〈τb〉 , l〉 : T {T ⊇ {Unknown}} `cetype 〈〈τb〉 , l〉 : T {T ⊇ {Unknown}}

[struct] `ctype 〈〈struct S〉 , l〉 : T {T ⊇ {}} `cetype 〈〈struct S〉 , l〉 : T {T ⊇ {Unknown}}

[union] `ctype 〈〈union U〉 , l〉 : T {T ⊇ {}} `cetype 〈〈union U〉 , l〉 : T {T ⊇ {Unknown}}

[ptr] `ctype 〈〈∗〉T ′, l〉 : T `cetype 〈〈∗〉T ′, l〉 : T

[array]
`ctype 〈T ′, l[]〉 : T1

`ctype 〈〈[n]〉T ′, l〉 : T
{T ⊇ {l[]}} `cetype 〈T ′, l[]〉 : T1

`cetype 〈[n]T ′, l〉 : T
{T ⊇ {l[]}}

[fun]
`cdecl di : Tdi

`ctype 〈〈(di)〉T ′, l〉 : T
`cdecl di : Tdi

`cetype 〈〈(di)〉T ′, l〉 : T

Figure 37: Constraint generation for declarations

[struct]
`cdecl di : T
`ctdef struct S{ di } : •

[union]
`cdecl di : T
`ctdef union U{ di } : •

[enum] `ctdef enum E{e} : •

Figure 38: Constraint generation for type definitions

Type definitions

The constraint generation for a type definition t, Ctdef (t), is shown in Figure 38.

Lemma 4.4 Let t ∈ TDef be a type definition. Then the constraint system Ctdef (t) has a
solution S, and it is a pointer abstraction with respect to t.

Proof Follows from Lemma 4.3. 2

Example 4.21 To implement sharing of common initial members of unions, a suitable
number of inclusion constraints are added to the constraint system. End of Example

Expressions

Let e be an expression in a function f . The constraint system Cexp(e) for e is defined by
Figure 39.

The constraint generating function Oc for operators is defined similarly to O used in
the specification for expressions. We omit a formal definition.

Example 4.22 For the application ‘p - q’, where ‘p’ and ‘q’ are pointers, we have
Oc(−∗int,∗int, Te, Tei

) = {Te ⊇ {Unknown}}. In the case of an application ‘p - 1’, we
have Oc(−∗int,int, Te, Tei

) = {Te ⊇ Te1}, cf. Example 4.17. End of Example

132

www.manaraa.com

[const] `cexp c : Te {Te ⊇ {Unknown}}
[string] `cexp s : Te {Te ⊇ {s}
[var] `cexp v : Te {Te ⊇ {v}

[struct]
`cexp e1 : Te1

`cexp e1.i : Te
{Te ⊇ Te1 .i}

[indr]
`cexp e1 : Te1

`cexp ∗e1 : Te
{Te ⊇ ∗Te1}

[array]
`cexp ei : Tei

`cexp e1[e2] : Te
{Te ⊇ ∗Te1}

[addr]
`cexp e1 : Te1

`cexp &le1 : Te
{Te ⊇ {l}, Tl ⊇ Te}

[unary]
`cexp e1 : Te1

`cexp o e1 : Te
Oc(o, Te, Te1)

[binary]
`cexp ei : Tei

`cexp e1 o e2 : Te
Oc(o, Te, Tei)

[ecall]
`cexp ei : Tei

`cexp ef(e1, . . . , en) {Te ⊇ {Unknown}}

[alloc] `cexp allocl(T) : Te {Te ⊇ {Tl}}

[user]
`cexp ei : Tei

`cexp f l(e1, . . . , en) : Te
{∗{f} ⊇ (∗Tei) → Tl, Te ⊇ {l}}

[call]
`cexp ei : Tei

`cexp el
0(e1, . . . , en) : Te

{∗Te0 ⊇ (∗Tei) → Tl, Te ⊇ {l}}

[pre]
`cexp e1 : Te1

`cexp ++e1 : Te
{Te ⊇ Te1}

[post]
`cexp e1 : Te1

`cexp e1++ : Te
{Te ⊇ Te1}

[assign]
`cexp ei : Tei

`cexp e1 aop e2 : Te
{∗Te1 ⊇ ∗Te2 , Te ⊇ Te2}

[comma]
`cexp ei : Tei

`cexp e1, e2 : Te
{Te ⊇ Te2}

[sizeof] `cexp sizeof(T) : Te {Te ⊇ {Unknown}}

[cast]
`cexp e1 : Te1

`cexp (T)e1 : Te
Castc(T, TypOf(e1), Te, Te1)

Figure 39: Constraint generation for expressions

133

www.manaraa.com

To represent the lvalue of the result of a function application, we use a “fresh” variable
Tl. For reasons to be seen in the next section, calls are assumed to be labeled.

The function Castc implementing constraint generation for casts is defined as follows.

Castc(Tto, Tfrom, Te, Te1) = case (Tto, Tfrom) of
(〈τb〉 , 〈τb〉) : {Te ⊇ Te1}
(〈∗〉T, 〈τb〉) : {Te ⊇ {Unknown}}
(〈τb〉 , 〈∗〉T) : {Te ⊇ {Unknown}}
(〈∗〉T, 〈∗〉 〈struct S〉) :

{
{Te ⊇ Te1 .1} T type of first member of S
{Te ⊇ Te1} Otherwise

(〈∗〉T1, 〈∗〉T2) : {Te ⊇ Te1}
Notice the resemblance with function Cast defined in Section 4.4.

Lemma 4.5 Let e ∈ Expr be an expression. Then Cexp(e) has a solution S, and

S|ALoc `pexp e : V

where `pexp is defined by Figure 36.

Proof To see that Cexp(e) has a solution, observe that Striv is a solution.
That S is a safe pointer abstraction for e follows from definition of pointer types

(Definition 4.5) and solution to constraint systems (Definition 4.6). 2

Example 4.23 Consider the call ‘f1(&2x)’; a (simplified) constraint system is

{T&x ⊇ {2}, T2 ⊇ {x}, Tf ⊇ {f}, ∗Tf ⊇ (∗T&x) → T1, Tf() ⊇ {1}}
cf. Figure 39. By “natural” rewritings (see Section 4.7) we get

{(Tf1) → Tf0 ⊇ (∗{2}) → T1, Tf() ⊇ {1}}
(where we have used that Tf is bound to (Tf1) → Tf0) which can be rewritten to

{(Tf1) → Tf0 ⊇ (T2) → T1, Tf() ⊇ {1}}
(where we have used that ∗{2} ⇒ T2) corresponding to

{Tf1 ⊇ {x}, Tf() ⊇ T1}
that is, the parameter of f may point to ‘x’, and f may return the value in location ‘1’.
Notice that use of contra-variant in the last step. End of Example

134

www.manaraa.com

[empty] `cstmt; : •
[expr]

`cexp e : Te

`cstmt e : •
[if]

`cexp e : Te `cstmt Si : •
`cstmt if (e) S1 else S2 : •

[switch]
`cexp e : Te `cstmt S1 : •
`cstmt switch (e) S1 : •

[case]
`cstmt S1 : •
`cstmt case e: S1 : •

[default]
`cstmt S1 : •
`cstmt default S1 : •

[while]
`cexp e : Te `cstmt S : •
`cstmt while (e) S1 : •

[do]
`cexp e : Te `cstmt S1 : •
`csmt do S1 while (e) : •

[for]
`cexp ei : Tei

`cstmt S1 : •
`cstmt for(e1;e2;e3) S1 : •

[label]
`cstmt S1 : •
`cstmt l : S1 : •

[goto] `cstmt goto m : •
[return]

`cexp e : Te

`cstmt return e : • {Tf0 ⊇ ∗Te}

[block]
`cstmt Si : •
`cstmt {Si} : •

Figure 40: Constraint generation for statements

Statements

Suppose s ∈ Stmt is a statement in a function f . The constraint system Cstmt(s) for s is
defined by Figure 40.

The rules basically collect the constraints for contained expressions, and add a con-
straint for the return statement.

Lemma 4.6 Let s ∈ Stmt be a statement in function f . Then Cstmt(s) has a solution S,
and S is a safe pointer abstraction for s.

Proof Follows from Lemma 4.5. 2

Functions

Let f ∈ Fun be a function definition f = 〈T,Dpar,Dloc,S〉. Define

Cfun(f) =
⋃

d∈Dpar

Cdecl(d) ∪ ⋃

d∈Dloc

Cdecl(d) ∪ ⋃

s∈S
Cstmt(s)

where Cdecl and Cstmt are defined above.

135

www.manaraa.com

Lemma 4.7 Let f ∈ Fun be a function. Then Cfun(f) has a solution S, and S is a safe
pointer abstraction for f .

Proof Obvious. 2

This completes the specification of constraint generation.

4.5.3 Completeness and soundness

Given a program p. We show that Cpgm has a solution and that the solution is a safe
pointer abstraction.

Lemma 4.8 Let p be a program. The constraint system Cpgm(p) has a solution.

Proof The trivial solution Striv solves Cpgm(p). 2

Theorem 4.1 Let p be a program. A solution S ∈ Sol(Cpgm(p)) is a safe pointer abstrac-
tion for p.

Proof Follows from Lemma 4.7, Lemma 4.3 and Lemma 4.4. 2

4.6 Inter-procedural pointer analysis

The intra-procedural analysis developed in the previous section sacrifices accuracy at
functions calls: all calls to a function are merged. Consider for an example the following
function:

/* inc ptr: increment pointer p */
int *inc_ptr(int *q)
{

return q + 1;
}

and suppose there are two calls ‘inc ptr(a)’ and ‘inc ptr(b)’, where ‘a’ and ‘b’ are
pointers. The intra-procedural analysis merges the calls and alleges a call to ‘inc ptr’
yields a pointer to either ‘a’ or ‘b’

With many calls to ‘inc ptr()’ spurious point-to information is propagated to unre-
lated call-sites, degrading the accuracy of the analysis. This section remedies the problem
by extending the analysis into an inter-procedural, or context-sensitive point-to analysis.

136

www.manaraa.com

4.6.1 Separating function contexts

The naive approach to inter-procedural analysis is by textual copying of functions before
intra-procedural analysis. Functions called from different contexts are copied, and the call-
sites changed accordingly. Copying may increase the size of the program exponentially,
and henceforth also the generated constraint systems.

Example 4.24 Consider the following program.

int main(void) int *dinc(int *p)
{ {

int *pa,*pb,a[10],b[10]; int *p1 = inc_ptr(p);
px = dinc(a); int *p2 = int_ptr(p1);
py = dinc(b); return p2;

} }

Copying of function ‘dinc()’ due to the two calls in ‘main()’ will create two variants with
4 calls to ‘int ptr()’. End of Example

The problem with textual copying of functions is that the analysis is slowed down due
to the increased number of constraints, and worse, the copying may be useless: copies of
function may be used in “similar” contexts such that copying does not enhance accuracy.
Ideally, the cloning of functions should be based on the result of the analysis, such that
only functions that gain from copying actually are copied.

Example 4.25 The solution to intra-procedural analysis of Example 4.24 is given below.

Tpa 7→ {a, b}
Tpb 7→ {a, b}
Tp 7→ {a, b}
Tq 7→ {a, b}

where the calls to ‘dinc()’ have been collapsed. By copying of ‘inc ptr()’ four times,
the pointers ‘a’ and ‘b’ would not be mixed up. End of Example

4.6.2 Context separation via static-call graphs

We employ the program’s static-call graph to differentiate functions in different contexts.
Recall that a program’s static-call graph is a function SCG : CallLabel × Variant →
Id × Variant mapping a call-site and a variant number of the enclosing function to a
function name and a variant. The static-call graph of the program in Example 4.24 is
shown in Figure 41. Four variants of ‘inc ptr()’ exist due to the two call-sites in ‘dinc()’
which again is called twice from ‘main()’.

Explicit copying of functions amounts to creating the variants as indicated by Fig-
ure 41. However, observe: the constraint systems generated for the variants are identical
except for constraints for calls and return. The idea is to generate constraints over vectors
of pointer types corresponding to the number of variants. For example, the constraint

137

www.manaraa.com

»»»»»»»»9

³³³³³³)

PPPPPPq

³³³³³³)

PPPPPPq

XXXXXXXXz

main

dinc1 dinc2

inc ptr1 inc ptr3 inc ptr4inc ptr2

Figure 41: Static-call graph for the example program

system for ‘inc ptr()’ will use vectors of length 5, since there are four variants. Variant
0 is used as a summary variant, and for indirect calls.

After the analysis, procedure cloning can be accomplished on the basis of the computed
pointer information. Insignificant variants can be eliminated and replaced with more
general variants, or possibly with the summary variant 0.

4.6.3 Constraints over variant vectors

Let an extended constraint system be a multi-set of extended constraints

T n ⊇ T n

where T range over pointer types. Satisfiability of constraints is defined by component-
wise extension of Definition 4.6.

Instead of assigning a single type variable to objects and expressions, we assign a vector
T of type variables. The length is given as the number of variants of the encapsulating
function (plus the 0 variant) or 1 in the case of global objects.

Example 4.26 Consider again the program in Example 4.24. Variable ‘p’ of ‘dinc’ is

associated with the vector p 7→
〈
T 0

p , T 1
p , T 2

p

〉
corresponding to variant 1 and 2, and the

summary 0. The vector corresponding to the parameter of ‘inc ptr()’ has five elements
due to the four variants. End of Example

The vector of variables associated with object o is denoted by To = 〈T 0
o , T 1

o , . . . , T n
o 〉.

Similarly for expressions and types.

Example 4.27 An inter-procedural solution to the pointer analysis problem in Exam-
ple 4.24:

〈
T 0

pa, T
1
pa

〉
7→ 〈{a}, {a}〉〈

T 0
pb, T

1
pb

〉
7→ 〈{b}, {b}〉〈

T 0
p , T 1

p , T 2
p

〉
7→ 〈{a, b}, {a}, {b}〉〈

T 0
q , T 1

q , T 2
q , T 3

q , T 4
q

〉
7→ 〈{a, b}, {a}, {a}, {b}, {b}〉

where the context numbering is shown in Figure 41. End of Example

In the example above, it would be advantageous to merge variant 1, 2, and 3, 4, respec-
tively.

138

www.manaraa.com

4.6.4 Inter-procedural constraint generation

The inter-procedural constraint generation proceeds almost as in the intra-procedural
analysis, Section 4.5.2, except in the cases of calls and return statements. Consider
constraint generation in a function with n variants.

The rule for constants:

{Te ⊇ 〈{Unknown}, {Unknown}, . . . , {Unknown}〉}
where the length of the vector is n + 1. The rule for variable references:

{Te ⊇ 〈{v}, {v}, . . . , {v}〉} if v is global
{Te ⊇ 〈{v0}, {v1}, . . . , {vn}〉} if v is local

where vi denote the i’th variant of object v. This rule seems to imply that there exists n
versions of v. We describe a realization below. (The idea is that an object is uniquely iden-
tified by its associated variable, so in practice the rule reads Te ⊇ 〈{T 0

v }, {T 1
v }, . . . , {T n

v }〉.)
Consider a call gl(e1, . . . , em) in function f . The constraint system is

⋃

i=1,...,n

{T ki

gj
⊇ ∗T i

ej
} ∪ ⋃

u=1,...,n

{Tli ⊇ T ki

g0
} ∪ {Te ⊇ {li}}

where SCG(l, i) = 〈g, ki〉.
The rule is justified as follows. The i’th variant of the actual parameters are related

to the corresponding variant ki of the formal parameters, cf. SCG(l, i) = 〈g, ki〉. Similarly
for the result. The abstract location l abstracts the lvalue(s) of the call.

The rule for an indirect call e0(e1, . . . , en) uses the summary nodes:

{∗T 0
e0
⊇ (∗T 0

ei
) → T 0

l , Te ⊇
〈
{l0}, {l0}, . . . , {l0}

〉
}

cf. the rule for intra-procedural analysis. Thus, no context-sensitivity is maintained by
indirect calls.

Finally, for every definition ‘x : T ’ that appears in n variants, the constraints
⋃

i=1,...,n

{T 0
x ⊇ T i

x}

are added. This assures that variant 0 of a type vector summarizes the variants.

Example 4.28 The first call to ‘inc ptr()’ in Example 4.24 gives rise to the following
constraints.

T 1
inc ptr ⊇ T 1

dinc, T
1
p ⊇ T 1

dinc0
variant 1

T 2
inc ptr ⊇ T 2

dinc, T
2
p ⊇ T 2

dinc0
variant 2

where we for the sake of presentation have omitted “intermediate” variables, and rewritten
the constraints slightly. End of Example

A constraint system for inter-procedural analysis consists of only a few more con-
straints than in the case of intra-procedural analysis. This does not mean, naturally, that
a inter-procedural solution can be found in the same time as an intra-procedural solu-
tion: the processing of each constraint takes more time. The thesis is the processing of an
extended constraint takes less time than processing of an increased number of constraints.

139

www.manaraa.com

4.6.5 Improved naming convention

As a side-efect, the inter-procedural analysis improves on the accuracy with respect to
heap-allocated objects. Recall that objects allocated from the same call-site are collapsed.

The constraint generation in the inter-procedural analysis for ‘allocl()’ calls is

{Te ⊇
〈
{l0}, {l1}, . . . , {ln}

〉
}

where li are n + 1 “fresh” variables.

Example 4.29 An intra-procedural analysis merges the objects allocated in the program
below even though they are unrelated.

int main(void) struct S *allocate(void)
{ {

struct S *s = allocate(); return alloc1(S);
struct S *t = allocate(); }

}
The inter-procedural analysis creates two variants of ‘allocate()’, and separates apart
the two invocations. End of Example

This gives the analysis the same accuracy with respect to heap-allocated objects as
other analyses, e.g. various invocations of a function is distinguished [Choi et al. 1993].

4.7 Constraint solving

This section presents a set of solution-preserving rewrite rules for constraint systems. We
show that repeated application of the rewrite rules brings the system into a form where
a solution can be found easily. We argue that this solution is minimal.

For simplicity we consider intra-procedural constraints only in this section. The
extension to inter-procedural systems is straightforward: pairs of types are processed
component-wise. Notice that the same number of type variables always appear on both
sides of a constraint. In practice, a constraint is annotated with the length of the type
vectors.

4.7.1 Rewrite rules

Let C be a constraint system. The application of rewrite rule l resulting in system C ′ is
denoted by C ⇒l C ′. Repeated application of rewrite rules is written C ⇒ C ′. Exhausted
application13 is denoted by C ⇒∗ C ′ (we see below that exhausted application makes
sense).

A rewrite rule l is solution preserving if a substitution S is a solution to C if and only
if it is a solution to C ′, when C ⇒l C ′. The aim of constraint rewriting is to propagate
point-to sets through the type variables. The rules are presented in Figure 42, and make
use of an auxiliary function Collect : TVar× CSystem → ℘(ALoc) defined as follows.

13Application until the system stabilizes.

140

www.manaraa.com

Type normalization
1.a C ≡ C′ ∪ {T ⊇ {s}.i} ⇒ C ∪ {T ⊇ TSi

} TypOf(s) = 〈struct S〉
1.b C ≡ C′ ∪ {T ⊇ ∗{o}} ⇒ C ∪ {T ⊇ To}
1.c C ≡ C′ ∪ {∗{o} ⊇ T } ⇒ C ∪ {T0 ⊇ T } o 7→ To

1.d C ≡ C′ ∪ {(Ti) → T ⊇ (T ′i) → T ′} ⇒ C ∪ {Ti ⊇ T ′i , T ′ ⊇ T}
Propagation
2.a C ≡ C′ ∪ {T1 ⊇ T2} ⇒ C ∪⋃

o∈Collect(T2,C){T1 ⊇ {o}}
2.b C ≡ C′ ∪ {T1 ⊇ T2.i} ⇒ C ∪⋃

o∈Collect(T2,C){T ⊇ {o}.i}
2.c C ≡ C′ ∪ {T1 ⊇ ∗T2} ⇒ C ∪⋃

o∈Collect(T2,C){T1 ⊇ ∗{o}}
2.d C ≡ C′ ∪ {∗T ⊇ T } ⇒ C ∪⋃

o∈Collect(T,C){∗{o} ⊇ T }

Figure 42: Solution preserving rewrite rules

Definition 4.8 Let C be a constraint system. The function Collect : TVar×CSystem →
℘(ALoc) is defined inductively by:

Collect(T, C) = {oi | T ⊇ {oi} ∈ C} ∪ {o | T ⊇ T1 ∈ C, oi ∈ Collect(T1, C)}
2

Notice that constraints may be self-dependent, e.g. a constraint system may contain
constraints {T1 ⊇ T2, T2 ⊇ T1}.

Lemma 4.9 Let C be a constraint system and suppose that T is a variable appearing in
T . Then Sol(C) = Sol(C ∪ {T ⊇ Collect(T, C)}).

Proof Obvious. 2

For simplicity we have assumed abstract location sets {o} consist of one element only.
The generalization is straightforward. Constraints of the form {o}.i ⊇ T can never occur;
hence no rewrite rule.

Lemma 4.10 The rules in Figure 42 are solution preserving.

Proof Assume that Cl ⇒l Cr. We show: S is a solution to C iff it is a solution to C ′.
Cases 1: The rules follow from the definition of pointer types (Definition 4.5). Observe
that due to static well-typedness, “s” in rule 1.a denotes a struct object.
Case 2.a: Due to Lemma 4.9.
Case 2.b: Suppose that S is a solution to Cl. By Lemma 4.9 and definition of pointer
types, S is a solution to Cl ∪ {T1 ⊇ {o}.i} for o ∈ Collect(T2, Cl). Suppose that S ′ is a
solution to Cr. By Lemma 4.9, S ′ is a solution to Cr ∪ {T2 ⊇ {o}} for o ∈ Collect(T2, Cr).
Case 2.c: Similar to case 2.b.
Case 2.d: Similar to case 2.b. 2

141

www.manaraa.com

Lemma 4.11 Consider a constraint system to be a set of constraint. Repeated application
of the rewrite rules in Figure 42 C ⇒ C ′ terminates.

Proof All rules add constraints to the system. This can only be done a finite number
of times. 2

Thus, when considered as a set, a constraint system C has a normal form C ′ which
can be found by exhaustive application C ⇒ C ′ of the rewrite rules in Figure 42.

Constraint systems in normal form have a desirable property: a solution can be found
directly.

4.7.2 Minimal solutions

The proof of the following theorem gives a constructive (though inefficient) method for
finding a minimal solution to a constraint system.

Theorem 4.2 Let C be a constraint system. Perform the following steps:

1. Apply the rewrite rules in Figure 42 until the system stabilizes as system C ′.
2. Remove from C ′ all constraints but constraints of the form T ⊇ {o} giving C ′′.
3. Define the substitution S by S = [T 7→ Collect(T, C ′′)] for all T in C ′′.

Then S|ALoc ∈ Sol(C), and S is a minimal solution.

Proof Due to Lemma 4.10 and Lemma 4.9 it suffices to show that S is a solution to C ′.
Suppose that S is not a solution to C ′. Clearly, S is a solution to the constraints added

during rewriting: constraints generated by rule 2.b are solved by 1.a, 2.c by 1.b, and 2.d
by 1.c. Then there exists a constraint c ∈ C \ C ′ which is not satisfied. Case analysis:

• c = T1 ⊇ {o}: Impossible due to Lemma 4.9.

• c = T1 ⊇ T2: Impossible due to exhaustive application of rule 2.a and Lemma 4.9.

• c = T1 ⊇ T2.i: Impossible due to rewrite rule 2.b and Lemma 4.9.

• c = T1 ⊇ ∗T2: Impossible due to rewrite rule 2.c and Lemma 4.9.

• c = ∗T1 ⊇ T : Impossible due to rewrite rules 2.d and 1.c, and Lemma 4.9.

Hence, S is a solution to C ′.
To see that S is minimal, notice that no inclusion constraints T1 ⊇ {o} than needed

are added; thus S must be a minimal solution. 2

The next section develops an iterative algorithm for pointer analysis.

142

www.manaraa.com

?

?

-

6

-

-

-

-

-
?

?

?
-

s{ } <struct S>

x{ } <int>

next{ } <*><struct S>

p{ } <*><int>

a{ } <[10]><*><int>

a[]{ }
Figure 43: Pointer type representation

4.8 Algorithm aspects

In this section we outline an algorithm for pointer analysis. The algorithm is similar to
classical iterative fixed-point solvers [Aho et al. 1986,Kildall 1973]. Further, we describe
a convenient representation.

4.8.1 Representation

To every declarator in the program we associate a pointer type. For abstract locations
that do not have a declarator, e.g. a[] in the case of an array definition ‘int a[10]’, we
create one. A object is uniquely identified by a pointer to the corresponding declarator.
Thus, the constraint T ⊇ ∗{o} is represented as T ⊇ ∗{To} which can be rewritten into
T ⊇ To in constant time.

Example 4.30 The “solution” to the pointer analysis problem of the program below is
shown in Figure 43.

struct S { int x; struct S *next; } s;
int *p, *a[10];
s.next = &s;
p = a[1] = &s.x;

The dotted lines denotes representation of static types.

End of Example

To every type variable ‘T’ we associate a set ‘T.incl’ of (pointers to) declarators.
Moreover, a boolean flag ‘T.upd’ is assumed for each type variable. The field ‘T.incl’
is incrementally updated with the set of objects ‘T’ includes. The flag ‘T.upd’ indicates
whether a set has changed since “last inspection”.

4.8.2 Iterative constraint solving

Constraints of the form T ⊇ ∗{To} can be “pre-normalized” to T ⊇ To during constraint
generation, and hence do not exists during the solving process. Similar for constraint
generated for user-function call.

The constraint solving algorithm is given as Algorithm 4.1 below.

143

www.manaraa.com

Algorithm 4.1 Iterative constraint solving.

do
fix = 1;
for (c in clist)

switch (c) {
case T1 ⊇ O: update(T1,O); break;
case T1 ⊇ T2: update(T1,T2.incl); break;
case T1 ⊇ T2.i: update(T1,struct(T2.incl,i)); break;
case T1 ⊇ *T2:

update(T1,indr(T2.incl)));
if (Unknown in T2.incl) abort("Unknown dereferenced");
break;

case *T1 ⊇ *T2:
if (T1.upd || T2.upd) {

for (o in T1.incl)
update(To,indr(T2.incl));

}
break;

case *T0 ⊇ (*T’i)->T’:
if (T0.upd) {

for ((Ti)->T in T0.incl)
clist ∪= { Ti ⊇ *T’i, T’ ⊇ T };

}
break;

}
while (!fix);

/* update: update content T.incl with O */
update(T,O)
{

if (T.incl 6⊆ O) { T.incl ∪= O; fix = 0; }
}

Functions ‘indr()’ and ‘struct()’ are defined the obvious way. For example, ‘indr()’
dereferences (looks up the binding of) a declarator pointer (location name) and returns
the point-to set. 2

Notice case for pointer deference. If Unknown is dereferenced, the algorithm aborts
with a “worst-case” message. This is more strict than needed. For example, the analysis
yields “worst-case” in the case of an assignment ‘p = *q’, where ‘q’ is approximated by
Unknown. In practice, constraints appearing at the left hand side of assignments are
“tagged”, and only those give rise to abortion.

4.8.3 Correctness

Algorithm 4.1 terminates since the ‘incl’ fields only can be update a finite number of
times. Upon termination, the solution is given by S = [T 7→ T.incl].

Lemma 4.12 Algorithm 4.1 is correct.

Proof The algorithm implements the rewrite rules in Figure 42. 2

144

www.manaraa.com

4.8.4 Complexity

Algorithm 4.1 is polynomial in the size of program (number of declarators). It has been
shown that inter-procedural may-alias in the context of multi-level pointers is P-space
hard [Landi 1992a].14 This indicates the degree of approximation our analysis make. On
the other hand, it is fast and the results seem reasonable.

4.9 Experiments

We have implemented a pointer analysis in the C-Mix system. The analysis is similar to
the one presented in this chapter, but deviates it two ways: it uses a representation which
reduces the number of constraints significantly (see below), and it computes summary
information for all indirections of pointer types.

The former decreases the runtime of the analysis, the latter increases it. Notice that
the analysis of this chapter only computes the lvalues of the first indirection of a pointer;
the other indirections must be computed by inspections of the objects to which a pointer
may point.

The value of maintaining summary information for all indirections depends on the
usage of the analysis. For example with summary information for all indirections, the
side-effect analysis of Chapter 6 does not need to summarize pointers at every indirection
node; this is done during pointer analysis. On the other hand, useless information may
be accumulated. We suspect that the analysis of this chapter is more feasible in practice,
but have at the time of writing no empirical evidence for this.

We have applied the analysis to some test programs. All experiments were conducted
on a Sun SparcStation II with 64 Mbytes of memory. The results are shown below. We
refer to Chapter 9 for a description of the programs.

Program Lines Constraints Solving

Gnu strstr 64 17 ≈ 0.0 sec
Ludcmp 67 0 0.0 sec
Ray tracer 1020 157 0.3 sec
ERSEM ≈ 5000 465 3.3 sec

As can be seen, the analysis is fast. It should be stressed, however, that none of
the programs use pointers extensively. Still, we believe the analysis of this chapter will
exhibit comparable run times in practice. The quality of the inferred information is good.
That is, pointers are approximated accurately (modulo flow-insensitivity). In average,
the points-to sets for a pointer are small.

Remark: The number of constraints reported above seems impossible! The point is
that most of the superset constraints generated can be solved by equality. All of these
constraints are pre-normalized, and hence the constraint system basically contains only
constraints for assignments (calls) involving pointers.

14This has only been shown for programs exhibiting more than four levels of indirection.

145

www.manaraa.com

4.10 Towards program-point pointer analysis

The analysis developed in this chapter is flow-insensitive: it produces a summary for the
entire body of a function. This benefits efficiency at the price of precision, as illustrated
by the (contrived) function to the left.

int foo(void) int bar(void)
{ {

if (test) { p = &x;
p = &x; foobar(p);
foobar(p); p = &y;

} else { foobar(p);
p = &y; }
foobar(p);

}
}

The analysis ignores the branch and information from one branch may influence the other.
In this example the loss of accuracy is manifested by the propagation of the point-to
information [p 7→ {x, y}] to both calls.

The example to the right illustrates lack of program-point specific information. A
program-point specific analysis will record that ‘p’ will point to ‘x’ at the first call, and
to ‘y’ at the second call. In this section we consider program-point specific, flow-sensitive
pointer analysis based on constraint solving.

4.10.1 Program point is sequence point

The aim is to compute a pointer abstraction for each program point, mapping pointers
to the sets of objects they may point to at that particular program point. Normally,
a program point is defined to be “between two statements”, but in the case of C, the
notion coincides with sequence points [ISO 1990, Paragraph 5.1.2.3]. At a sequence point,
all side-effects between the previous and the current point shall have completed, i.e. the
store updated, and no subsequent side-effects have taken place. Further, an object shall
be accessed at most once to have its value determined. Finally, an object shall be accessed
only to determine the value to be stored. The sequence points are defined in Annex C of
the Standard [ISO 1990].

Example 4.31 The definition renders undefined an expression such as ‘p = p++ + 1’
since ‘p’ is “updated” twice between two sequence points.

Many analyses rely on programs being transformed into a simpler form, e.g. ‘e1 = e2 =

e3’ to ‘e2 = e3; e1 = e2’. This introduces new sequence points and may turn an undefined
expression into a defined expression, for example ‘p = q = p++’. End of Example

In the following we for simplicity ignore sequence points in expressions, and use
the convention that if S is a statement, then m is the program immediately before
S, and n is the program after. For instance, for a sequence of statements, we have
m1S1n1m2S2n2 . . . mnSnnn.

146

www.manaraa.com

4.10.2 Program-point constraint-based program analysis

This section briefly recapitulates constraint-based, or set-based program analysis of im-
perative language, as developed by Heintze [Heintze 1992].

To every program points m, assign a vector of type variables T
m

representing the
abstract store.

Example 4.32 Below the result of a program-point specific analysis is shown.

int main(void)
{

int x, y, *p;
/* 1:

〈
T 1

x , T 1
y , T 1

p

〉 7→ 〈{}, {}, {}〉 */
p = &x;
/* 2:

〈
T 2

x , T 2
y , T 2

p

〉 7→ 〈{}, {}, {x}〉 */
p = &y;
/* 3:

〈
T 3

x , T 3
y , T 3

p

〉 7→ 〈{}, {}, {y}〉 */
x = 4;
/* 4:

〈
T 4

x , T 4
y , T 4

p

〉 7→ 〈{}, {}, {y}〉 */

}

Notice that T 3
p does not contain {x}. End of Example

The corresponding constraint systems resemble those introduced in Section 4.5. How-
ever, extra constraints are needed to propagate the abstract state through the program
points. For example, at program point 4, the variable T 4

p assumes the same value as T 3
p ,

since it is not updated.

Example 4.33 Let T
n ⊇ T

m
[x 7→ O] be a short hand for T n

o ⊇ Tm
o for all o except x,

and T n
x ⊇ O. Then the following constraints abstracts the pointer usage in the previous

example:

2 : T
2 ⊇ T

1
[p 7→ {x}]

3 : T
3 ⊇ T

2
[p 7→ {y}]

4 : T
4 ⊇ T

3
[x 7→ {}]

End of Example

The constraint systems can be solved by the rewrite rules in Figure 42, but unfortu-
nately the analysis cannot cope with multi-level pointers.

4.10.3 Why Heintze’s set-based analysis fails

Consider the following program fragment.

147

www.manaraa.com

int x, y, *p, **q;
/* 1:

〈
T 1

x , T 1
y , T 1

p , T 1
q

〉 7→ 〈{}, {}, {}, {}〉 */
p = &x;
/* 2:

〈
T 2

x , T 2
y , T 2

p , T 2
q

〉 7→ 〈{}, {}, {x}, {}〉 */
q = &p;
/* 3:

〈
T 3

x , T 3
y , T 3

p , T 3
q

〉 7→ 〈{}, {}, {x}, {p}〉 */
*q = &y;
/* 4:

〈
T 4

x , T 4
y , T 4

p , T 4
q

〉 7→ 〈{}, {}, {y}, {p}〉 */

The assignment between program point 3 and 4 updates the abstract location p, but
‘p’ does not occur syntactically in the expression ‘*q = &y’. Generating the constraints

T
4 ⊇ T

3
[∗T 3

q 7→ {y}] will incorrectly leads to T 4
p ⊇ {x, y}.

There are two problems. First, the values to be propagated through states are not
syntactically given by an expression, e.g. that ‘p’ will be updated between program points
3 and 4. Secondly, the indirect assignment will be modeled by a constraint of the form
∗T 4

q ⊇ {y} saying that the indirection of ‘q’ (that is, ‘p’) should be updated to contain
‘y’. However, given T 4

q 7→ {p}, it is not apparent from the constraint that ∗T 4
q ⊇ {y}

should be rewritten to T 4
p ⊇ {y}; program points are not a part of a constraint (how is

the “right” type variable for ‘p’ chosen?).
To solve the latter problem, constraints generated due to assignments can be equipped

with program points: T n ⊇m T meaning that program point n is updated from state m.
For example, ∗T 4

q
4 ⊇3 {y} would be rewritten to T 4

p ⊇ {y}, since T 4
q 7→ {p}, and the

update happens at program point 4.
The former problem is more intricate. The variables not to be updated depend on

the solution to T 4
q . Due to loops in the program and self-dependences, the solution to T 4

q

may depend on the variables propagated through program points 3 and 4.
Currently, we have no good solution to this problem.

4.11 Related work

We consider three areas of related work: alias analysis of Fortran and C, the point-to
analysis developed by Emami which is the closest related work, and approximation of
heap-allocated data structures.

4.11.1 Alias analysis

The literature contains much work on alias analysis of Fortran-like languages. Fortran
differs from C in several aspects: dynamic aliases can only be created due to reference
parameters, and program’s have a purely static call graph.

Banning devised an efficient inter-procedural algorithm for determining the set of
aliases of variables, and the side-effects of functions [Banning 1979]. The analysis has two
steps. First all trivial aliases are found, and next the alias sets are propagated through
the call graph to determine all non-trivial aliases. Cooper and Kennedy improved the
complexity of the algorithm by separating the treatment of global variables from reference

148

www.manaraa.com

parameters [Cooper and Kennedy 1989]. Chow has designed an inter-procedural data flow
analysis for general single-level pointers [Chow and Rudmik 1982].

Weihl has studied inter-procedural flow analysis in the presence of pointers and pro-
cedure variables [Weihl 1980]. The analysis approximates the set of procedures to which
a procedure variable may be bound to. Only single-level pointers are treated which is a
simpler problem than multi-level pointers, see below. Recently, Mayer and Wolfe have im-
plemented an inter-procedural alias analysis for Fortran based on Cooper and Kennedy’s
algorithm, and report empirical results [Mayer and Wolfe 1993]. They conclude that the
cost of alias analysis is cheap compared to the possible gains. Richardson and Ganap-
athi have conducted a similar experiment, and conclude that aliases only rarely occur
in “realistic” programs [Richardson and Ganapathi 1989]. They also observe that even
though inter-procedural analysis theoretically improves the precision of traditional data
flow analyses, only a little gain is obtained in actual runtime performance.

Bourdoncle has developed an analysis based on abstract interpretation for computing
assertions about scalar variables in a language with nested procedures, aliasing and re-
cursion [Bourdoncle 1990]. The analysis is somewhat complex since the various aspects of
interest are computed in parallel, and are not been factored out. Larus et al. used a similar
machinery to compute inter-procedural alias information [Larus and Hilfinger 1988]. The
analysis proceeds by propagating alias information over an extended control-flow graph.
Notice that this approach requires the control-flow graph to be statically computable,
which is not the case with C. Sagiv et al. computes pointer equalities using a similar
method [Sagiv and Francez 1990]. Their analysis tracks both universal (must) and exis-
tential (may) pointer equalities, and is thus more precise than our analysis. It remains to
extend these methods to the full C programming language. Harrison et al. use abstract
interpretation to analyze program in an intermediate language Mil into which C programs
are compiled [Harrison III and Ammarguellat 1992]. Yi has developed a system for auto-
matic generation of program analyses [Yi 1993]. It automatically converts a specification
of an abstract interpretation into an implementation.

Landi has developed an inter-procedural alias analysis for a subset of the C language
[Landi and Ryder 1992,Landi 1992a]. The algorithm computes flow-sensitive, conditional
may-alias information that is used to approximate inter-procedural aliases. The analysis
cannot cope with casts and function pointers. Furthermore, its performance is not im-
pressive: 396s to analyze a 3.631 line program is reported.15 Choi el al. have improved
on the analysis, and obtained an algorithm that is both more precise and efficient. They
use a naming technique for heap-allocated objects similar to the one we have employed.
Cytron and Gershbein have developed a similar algorithm for analysis of programs in
static single-assignment form [Cytron and Gershbein 1993].

Landi has shown that the problem of finding aliases in a language with more than
four levels of pointer indirection, runtime memory allocation and recursive data struc-
tures is P-space hard [Landi and Ryder 1991,Landi 1992a]. The proof is by reduction of
the set of regular languages, which is known to be P-space complete [Aho et al. 1974],
to the alias problem [Landi 1992a, Theorem 4.8.1]. Recently it has been shown that
intra-procedural may-alias analysis under the same conditions actually not is recursive

15To the author knowledge, a new implementation has improved the performance substantially.

149

www.manaraa.com

[Landi 1992b]. Thus, approximating algorithms are always needed in the case of lan-
guages like C.

4.11.2 Points-to analysis

Our initial attempt at pointer analysis was based on abstract interpretation implemented
via a (naive) standard iterative fixed-point algorithm. We abandoned this approach since
experiments showed that the analysis was far to slow to be feasible. Independently, Emami
has developed a point-to analysis based on traditional gen-kill data-flow equations, solved
via an iterative algorithm [Emami 1993,Emami et al. 1993].

Her analysis computes the same kind of information as our analysis, but is more
precise: it is flow-sensitive and program-point specific, computes both may and must
point-to information, and approximates calls via functions pointers more accurately than
our analysis.

The analysis takes as input programs in a language resembling three address code
[Aho et al. 1986]. For example, a complex statement as x = a.b[i].c.d[2][j].e is
converted to

temp0 = &a.b;
temp1 = &temp0[i];
temp2 = &(*temp1).c.d;
temp3 = &temp2[2][j];
x = (*temp3).e;

where the temp’s are compile-time introduced variables [Emami 1993, Page 21]. A Simple
language may be suitable for machine code generation, but is unacceptably for commu-
nication of feedback.

The intra-procedural analysis of statement proceeds by a standard gen-kill approach,
where both may and must point-to information is propagated through the control-flow
graph. Loops are approximated by a fixed-point algorithm.16 Heap allocation is approxi-
mated very rudely using a single variable “Heap” to represent all heap allocated objects.

We have deliberately chosen to approximate function calls via pointers conservatively,
the objective being that more accurate information in the most cases (and definitely for
our purpose) is useless. Ghiya and Emami have taken a more advanced approach by using
the point-to analysis to perform inter-procedural analysis of calls via pointers. When it
has been determined that a function pointer may point to a function f , the call-graph
is updated to reflect this, and the (relevant part of the) point-to analysis is repeated
[Ghiya 1992].

The inter-procedural analysis is implemented via the program’s extended control-flow
graph. However, where our technique only increases the number of constraints slightly,
Emami’s procedure essentially corresponds to copying of the data-flow equations; in prac-
tise, the algorithm traverses the (representation) of functions repeatedly. Naturally, this
causes the efficiency to degenerate. Unfortunately, we are not aware of any runtime
benchmarks, so we can not compare the efficiency of our analysis to Emami’s analysis.

16Unconditional jumps are removed by a preprocess.

150

www.manaraa.com

4.11.3 Approximation of data structures

Closely related to analysis of pointers is analysis of heap-allocated data structures. In
this chapter we have mainly been concerned with stack-allocated variables, approximating
runtime allocated data structures with a 1-limit methods.

Jones and Munchnick have developed a data-flow analysis for inter-procedural analysis
of programs with recursive data structures (essentially Lisp S-expressions). The analysis
outputs for every program point and variable a regular tree grammar, that includes all
the values the variable may assume at runtime. Chase el al. improve the analysis by using
a more efficient summary technique [Chase et al. 1990]. Furthermore, the analysis can
discover “true” trees and lists, i.e. data structures that contain no aliases between its
elements. Larus and Hilfinger have developed a flow analysis that builds an alias graph
which illustrates the structure of heap-allocated data [Larus and Hilfinger 1988].

4.12 Further work and conclusion

We have in this chapter developed an inter-procedural point-to analysis for the C pro-
gramming language, and given a constraint-based implementation. The analysis has been
integrated into the C-Mix system and proved its usefulness. However, several areas for
future work remain to be investigated.

4.12.1 Future work

Practical experiments with the pointer analysis described in this chapter have convincingly
demonstrated the feasibility of the analysis, especially with regard to efficiency. The
question is whether it is worthwhile to sacrifice some efficiency for the benefit of improved
precision. The present analysis approximates as follows:

• flow-insensitive/summary analysis of function bodies,

• arrays are treated as aggregates,

• recursive data structures are collapsed,

• heap-allocated objects are merged according to their birth-place,

• function pointers are not handled in a proper inter-procedurally way.

Consider each in turn.
We considered program-specific pointer analysis in Section 4.10. However, as apparent

from the description, the amount of information both during the analysis and in the final
result may be too big for practical purposes. For example, in the case of a 1,000 line
program with 10 global variables, say, the output will be more than 100,000 state variables
(estimating the number of local variables to be 10). Even in the (typical) case of a sparse
state description, the total memory usage may easily exceed 1M byte. We identify the
main problem to be the following: too much irrelevant information is maintained by the

151

www.manaraa.com

constraint-based analysis. For example, in the state corresponding to the statement ‘*p =

1’ the only information of interest is that regarding ‘p’. However, all other state variables
are propagated since they may be used at later program points.

We suspect that the extra information contributes only little on realistic programs,
but experiments are needed to clarify this. Our belief is that the poor man’s approach
described in Section 4.2 provides the desired degree of precision, but we have not yet
made empirical test that can support this.

Our analysis treats arrays as aggregates. Program using tables of pointers may suffer
from this. Dependence analysis developed for parallelizing Fortran compilers has made
some progress in this area [Gross and Steenkiste 1990]. The C language is considerably
harder to analyze: pointers may be used to reference array elements. We see this as the
most promising extension (and the biggest challenge).

The analysis in this chapter merges recursive data structures.17 In our experience
elements in a recursive data structure is used “the same way”, but naturally, exceptions
may be constructed. Again, practical experiments are needed to evaluate the loss of
precision.

Furthermore, the analysis is mainly geared toward analysis of pointers to stack-
allocated objects, using a simple notion of (inter-procedural) birth-place to describe
heap-allocated objects. Use of birth-time instead of birth-place may be an improvement
[Harrison III and Ammarguellat 1992]. In the author’s opinion discovery of for instance
singly-linked lists, binary trees etc. may find substantial use in program transformation
and optimization, but we have not investigated inference of such information in detail.

Finally, consider function pointers. The present analysis does not track down inter-
procedurally use of function pointers, but uses a sticky treatment. This greatly simplifies
the analysis, since otherwise the program’s call graph becomes dynamic. The use of static-
call graphs is only feasible when most of the calls are static. In our experience, function
pointers are only rarely used which justifies our coarse approximation, but naturally some
programming styles may fail. The approach taken by Ghiya [Ghiya 1992] appears to be
expensive, though.

Finally, the relation and benefits of procedure cloning and polymorphic-based analysis
should be investigated. The k-limit notions in static-call graphs give a flexible way of
adjusting the precision with respect to recursive calls. Polymorphic analyses are less
flexible but seem to handle program with dynamic call graphs more easily.

4.12.2 Conclusion

We have reported on an inter-procedural, flow-insensitive point-to analysis for the entire
C programming language. The analysis is founded on constraint-based program analysis,
which allows a clean separation between specification and implementation. We have
devised a technique for inter-procedural analysis which prevents copying of constraints.
Furthermore we have given an efficient algorithm.

17This happens as a side-effect of the program representation, but the k-limit can easily be increased.

152

www.manaraa.com

Chapter 5

Binding-Time Analysis

We develop an efficient binding-time analysis for the Ansi C programming language. The
aim of binding-time analysis is to classify constructs (variables, expressions, statements,
functions, . . .) as either compile-time or run-time, given an initial division of the input.
Evidently, a division where all variables are classified as run-time is correct but of no
value. We seek a most static annotation that does not break the congruence principle: a
construct that depends on a run-time value must be classified as run-time. More precisely,
the analysis computes a polyvariant, program-point insensitive division.

Explicit separation of binding-times has turned out to be crucial for successful self-
application of partial evaluators. It also seems an important stepping stone for special-
ization of imperative language featuring pointers, user-defined structs and side-effects.
Binding-time analysis is the driving part of a generating-extension transformation.

Given a program, the analysis annotates all type specifiers with a binding time. For
example, an integer pointer may be classified as a “static pointer to a dynamic object”.
We present various extensions that may enhance the result of program specialization.

The analysis is specified by the means of non-standard type system. Given a program
where run-time constructs are marked, the rules check the consistency of the annotation.
A program satisfying the type systems is well-annotated.

The type systems are then formulated in a constraint-based framework for binding-
time inference. The constraints capture the dependencies between an expression and its
subexpressions. The constraint system consists of constraints over binding-time attributed
types. It is shown that a solution to a constraint system yields a well-annotated program.
An extension is given that allows context-sensitive analysis of functions, based on the
program’s static-call graph.

An efficient constraint-solver is developed. The algorithm exhibits an amortized run-
time complexity which is almost-linear, and in practice it is extremely fast. We have
implemented and integrated the analysis into the C-Mix partial evaluator.

Part of this chapter is based on previous work on binding-time analysis for self-
applicable C partial evaluation [Andersen 1993a,Andersen 1993b]. It has been extended
to cover the full Ansi C language; the constraint formulation has been simplified, and a
new and faster algorithm developed. Furthermore, the context-sensitive, or polyvariant,
inference has been added. Part of this chapter is based on the paper [Andersen 1993a].

153

www.manaraa.com

5.1 Introduction

A binding-time analysis takes a program and an initial division of the input into static
(compile-time) and dynamic (run-time), and computes a division classifying all expres-
sions as being either static or dynamic. An expression that depends on a dynamic value
must be classified dynamic. This is the so-called congruence principle.

Explicit separation of binding times is useful in a number of applications. In constant
folding, static expressions depend solely on available values, and can thus be evaluated at
compile-time. In partial evaluation, static constructs can be evaluated at specialization
time while residual code must be generated for dynamic expressions. In a generating-
extension transformation, dynamic constructs are changed to code generating expressions.

5.1.1 The use of binding times

Binding-time analysis was introduced into partial evaluation as a means to obtain efficient
self-application of specializers. Assume that ‘int’ is an interpreter and consider self-
application of partial evaluator ‘mix’.

[[mix1]](mix2, int) ⇒ comp

During self-application, the second ‘mix’ (‘mix2’) cannot “see” the “natural” binding times
in ‘int’: that the program is available when the input is delivered. Thus, the resulting
compiler must take into account that, at compile-time, only the input is given. This is
excessively general since the program will be available at compile time. The problem is
solved by annotating ‘int’ with binding times that inform ‘mix’ that the program is truly
compile-time [Jones et al. 1993, Chapter 7]

Explicit binding-time separation seems also important for successful specialization of
imperative languages featuring pointers, user-defined structs, run-time memory alloca-
tions and side-effects. Consider for example specialization of the following function.

int foo(void)
{

int x, *p;
p = &x;
return bar(p);

}

Must the address operator application be suspended? An on-line partial evaluator cannot
decide this since it in general depends on ‘bar()’s usage of its parameter. A binding-time
analysis collects global information to determine the binding time of ‘p’, and thus whether
the application must be suspended.

The first binding-time analyses treated small first-order Lisp-like programs, and were
implemented via abstract interpretation over the domain {S < D} [Jones et al. 1989].
Data structures were considered aggregates such that, for example, an alist with a static
key but a dynamic value would be approximated by ‘dynamic’. Various analyses coping
with partially-static data structures and higher-order languages have later been developed
[Bondorf 1990,Consel 1993a,Launchbury 1990,Mogensen 1989].

154

www.manaraa.com

Recently, binding-time analyses based on non-standard type inference have attracted
much attention [Birkedal and Welinder 1993,Bondorf and Jørgensen 1993,Gomard 1990,
Henglein 1991,Nielson and Nielson 1988]. They capture in a natural way partially-static
data structures as well as the higher-order aspect of functional languages, and accommo-
date efficient implementations [Henglein 1991].

5.1.2 Efficient binding-time analysis

Even though many program analyses specified by the means of type systems can be imple-
mented by (slightly) modified versions of the standard type-inference algorithm W, this
approach seems to give too in-efficient analyses [Andersen and Mossin 1990,Gomard 1990,
Nielson and Nielson 1988].

Based on the ideas behind semi-unification, Henglein reformulated the problem and
gave an efficient constraint-set solving algorithm for an untyped lambda calculus with
constants and a fixed-point operator [Henglein 1991]. The analysis exhibits an amortized
run-time complexity that is almost-linear in the size of the input program.

The overall idea is to capture dependencies between an expression and its subexpres-
sions via constraints. For example, in the case of an expression

e ≡ if e1 then e2 else e3,

the following constraints could be generated:

{Te2 ¹ Te, Te3 ¹ Te, Te1 > Te}
where Te is a binding-time variable assigned to expression e.

The first two constraints say that the binding time of the expression e is greater then
or equal to the binding time of the returned values (where S ≺ D). The last constraint
captures that if the test expression is dynamic, then so must the whole expression. A
solution to a constraint system is a substitution of S or D for type variables such that all
constraints are satisfied.

The analysis proceeds in three phases. First, the constraint set is collected during
a syntax-directed traversal of the program. Next, the constraints are normalized by
exhaustive application of a set of rewrite rules. Finally the constraint set is solved, which
turns out to be trivial for normalized systems.

5.1.3 Related work

Since we originally formulated a binding-time analysis for C [Andersen 1991], and imple-
mented it [Andersen 1993a], Bondorf and Jørgensen have developed a similar constraint-
set based analysis for the Similix partial evaluator [Bondorf and Jørgensen 1993]. Their
analysis treats a higher-order subset of the Scheme programming language and supports
partially static data structures. The semantics of the Similix specializer is somewhat
different from the semantics of our specializer, which in some respects simplifies their
analysis. For example, in Similix, structured values passed to an external function (prim-
itive operator) are suspended. This is too conservative in the case of C.

155

www.manaraa.com

Birkedal and Welinder have recently formulated and implemented a binding-time anal-
ysis for the Standard ML language [Birkedal and Welinder 1993].

5.1.4 The present work

This chapter contributes with three main parts. We specify well-separation of binding
time annotations, hereby giving a correctness criteria for the analysis. The definition
of well-annotatedness naturally depends on the use of the annotations. For example,
the generating-extension transformation of Chapter 3 imposes several restrictions upon
binding times, e.g. that side-effects under dynamic control must be suspended.

Next we present a monovariant binding-time analysis, and extend it to a context-
sensitive polyvariant analysis. Normally, context-sensitive constraint-based analysis is
achieved by explicit copying of constraints; we give an approach where constraints over
vectors are generated. This way, the number of constraints does not grow exponentially.

Example 5.1 Consider the following C program.

int pows(int x, int y) int pow(int base, int x)
{ {

pow(x,y); int p = 1;
pow(y,x); while (base--) p *= x;

} return p;
}

Suppose that ‘x’ is static and ‘y’ is dynamic. A context-insensitive analysis will merge
the two calls to ‘pow(), and henceforth classify as dynamic both parameters. A context-
sensitive analysis makes two annotations of the function: one where ‘base’ is static and
‘x’ is dynamic, and vice versa. End of Example

Finally, we develop an efficient inference algorithm that runs in almost-linear time.
The algorithm is based on efficient find-union data structures.

We assume the existence of pointer information. That is, for every variable p of pointer
type, an approximation of the set of objects p may point to at run-time. Furthermore, we
assume that assignments are annotated as side-effecting or conditionally side-effecting if
it may assign a non-local object, or assign a non-local object under conditional control,
respectively. These annotations can be computed by the pointer analysis of Chapter 4
and the side-effect analysis of Chapter 6.

5.1.5 Overview of the chapter

The chapter is organized as follows. Section 5.2 discusses some intriguing constructs in
the C language. Section 5.3 defines well-annotated programs. Section 5.4 develops a
constraint-based formulation. Section 5.5 presets an efficient normalization algorithm. In
Section 5.6 we extend the analysis into a polyvariant analysis. Section 5.7 contains some
examples, Section 5.8 describes related work, and Section 5.10 holds the conclusion and
list topics for further work.

156

www.manaraa.com

5.2 Separating binding times

A classification of variables1 into static and dynamic is called a division. A necessary
requirement for a binding-time analysis is the so-called congruence principle: a static
variable must not depend on a dynamic variable. Furthermore, it must fulfill the require-
ments imposed by the generating-extension transformation, as listed in Chapter 3. We
briefly review these when needed. In this section we consider some intricate aspects of
the C language.

5.2.1 Externally defined identifiers

A C program normally consists of a set of translation units. Identifiers defined in other
modules than the one being analyzed are external. An externally defined identifier is
brought into scope via an ‘extern’ declaration. Global identifiers are by default “ex-
ported” to other modules unless explicitly declared to be local by the means of the ‘static’
storage specifier.

Example 5.2 The program below consists of two files. File 2 defines the function ‘pow()’
which is used in file 1.

/* File 1 */ /* File 2 */
extern int errno;
extern double my_pow(double,double); int errrno;
int main(void); double pow(double b,double x)
{ {

double p = pow(2,3); if (x > 0.0)
if (!errno) return exp(x * log(b));

printf("Pow = %f\n", p); errno = EDOM;
return errno; return 0.0;

} }

Looking isolated at file 2, it cannot be determined whether the global variable ‘errno’ is
used (and even assigned) by other modules. Further, the calls to ‘pow()’ are unknown.
When looking at file 1, the values assigned to ‘errno’ are unknown. End of Example

This have two consequences: for the analysis to be safe,

• all global variables must be classified dynamic, and

• all functions must be annotated dynamic. This restriction can be alleviated by
copying all functions, and annotating the copy completely dynamic.

Naturally, this is excessively strict, and it obstructs possible gains from specialization.
Inter-modular information (or user guidance) is needed to make less conservative assump-
tions. This is the subject of Chapter 7 that considers separate program analysis.

In this chapter we adopt the following assumptions.

1C allows complex data structures so ‘variables’ should be replaced by ‘objects’.

157

www.manaraa.com

Constraint 5.1

• We analyze programs that consist of one or more translation units.2

• Only calls to library functions are ‘extern’.3

• Other modules do not refer to global identifiers. This means that global identifiers
are effectively considered ‘static’.

Chapter 7 develops an analysis that eliminates these requirements.

5.2.2 Pure functions

Calls to externally defined functions must be suspended since, in general, the operational
behavior of such functions are unknown. For example, a function may report errors in a
global variable, as is the case for most functions defined in the <math.h> library.

Example 5.3 Suppose an external function ‘count()’ counts the number of times a
particular part of a program is invoked.

/* File 1 */ /* File 2 */
extern void count(void);
int main(void) void count(void)
{ {

... static int n = 0;
count(); n++;
... return;
return 0; }

}

Evaluation of a call ‘count()’ during specialization is dubious due to the side-effects on
variable ‘n’. More dramatic examples include functions that output data or abort program
execution. End of Example

This means that calls such as ‘sin(M PI)’ will be annotated dynamic, and thus not
replaced by a constant during specialization, as would be expected. To ameliorate the
situation, an externally function can be specified as pure.

Definition 5.1 A function is pure if it commits no side-effects, i.e. assignments to non-
local objects. 2

In this chapter we assume that function are pre-annotated by ‘pure’ specifiers. The
annotations can be derived by the side-effect analysis of Chapter 6, or be given as user
specifications.

2A ‘program’ does not necessary have to be complete.
3A ‘library function’ is here be interpreted as a function defined independently of the program.

158

www.manaraa.com

5.2.3 Function specialization

A function can be handled in essentially three different ways by a partial evaluator. It can
be specialized and possibly shared between several residual calls; it can be unconditionally
specialized such that no sharing is introduced, or it can be unfolded. The treatment of
a function may influence the binding times. For example, the parameters of an unfolded
function may be assigned partially-static binding times, whereas other functions must
have either completely static or completely dynamic parameters.

In this chapter we will for ease of presentation assume that all functions are specialized
and possibly shared. We describe the modifications needed to support analysis of unfold-
able functions in Section 5.4.8.

5.2.4 Unions and common initial members

The Standard specifies that common initial members in members of struct type in a union
shall be truly shared, cf. Section 2.4. This implies that these fields must be given the same
binding time.

For simplicity we ignore the problem in the later exposition. The rule is easy to
implement but ugly to describe. The idea is to generate constraints that relate the
common members.

5.2.5 Pointers and side-effects

A side-effect is either due to an assignment where the left hand side expression evaluates
to the address of a non-local object, or run-time memory allocation, which side-effects the
heap.

We will assume that assignments are annotated with side-effect information. The
annotation † on an assignment e1 =† e2 means that the expression (may) side-effect.
The annotation ‡ on an assignment e1 =‡ e2 means that the expression (may) side-effect
under conditional control. See Chapter 6 for definition and computation of side-effects
annotations.

The generating-extension transformation requires that side-effects under dynamic con-
trol shall be suspended. Initially, we will suspend side-effects under conditional control;
a later extension develops suspension of side-effects under dynamic control only (Sec-
tion 5.4.8).

5.2.6 Run-time memory allocation

Run-time memory allocation by the means of ‘malloc()’ (or one of its derived forms)
shall be suspended to run-time. Only allocation via the ‘mix’ function ‘alloc()’ may be
performed at specialization time.

We assume that all ‘allocl()’ calls are labeled uniquely. The label l is employed to
indicate the binding time of objects allocated by the l’th call-site. In the following we often
implicitly assume definitions of the form ‘struct S *l’ for all alloc calls ‘allocl(S)’.

159

www.manaraa.com

Heap-allocated objects are anonymous global objects. Recall that in order to compare
function calls to detect sharing of residual functions, call signatures must be compared.
This may be time-consuming, and it may thus be desirable to prevent specialization with
respect to heap-allocated data.

More broadly, we assume a specifier ‘residual’ that unconditionally shall suspend a
variable. For example, when a programmer defines ‘residual int *p’ the pointer ‘p’
shall be classified dynamic.

5.2.7 Implementation-defined behaviour

A program can be conforming or strictly conforming to the Ansi C Standard [ISO 1990].
A strictly conforming program is not allowed to depend on undefined, unspecified or
implementation-defined behavior. A conforming program may rely on implementation-
defined behavior. An example of a non-strictly conforming feature is cast of integral
values to pointers. Implementation-defined features shall be suspended to run-time.

Example 5.4 The cast in ‘(int *)0x2d0c’ must be annotated dynamic since cast of an
integral value to a pointer is implementation-defined.

The result of the ‘sizeof()’ is implementation-defined. Thus, the application shall
be annotated dynamic. End of Example

A special class of implementation-defined operations is casts. Cast between base types
presents no problem: if the value is static the cast can be performed during specialization;
otherwise it must be annotated dynamic. Below we will often ignore casts between base
types, and only consider casts involving a pointer.

5.2.8 Pointers: casts and arithmetic

The C language supports cast between pointers and integral values, and pointer arith-
metic. For example, the cast ‘(size t)p’ casts a pointer ‘p’ to a “size t” value, and ‘p
+ 2’ increases the pointer by 2.

Consider first cast of pointers which can be divided into four group [ISO 1990, Para-
graph 6.3.4].

1. Cast of a pointer to an integral values. The result is implementation-defined.

2. Cast of an integral value to a pointer. The result is implementation-defined.

3. Cast of a pointer type to another pointer type with less alignment requirement and
back again. The result shall compare equal with the original pointer.

4. A function pointer can be cast to another function pointer and back again, and the
result shall compare equal with the original value. If a converted pointer is used to
call a function with a incompatible type, the result is undefined.

160

www.manaraa.com

In the two first cases, the cast shall be annotated dynamic. In case three and four, the
cast can be annotated static provided the pointers are static.4

Consider now pointer arithmetic. An integer value may be added to a pointer, and two
pointers may be subtracted. In both cases, for the operation to be static, both operands
must be static.

Example 5.5 Consider an expression ‘p + 1’ which adds one to a pointer. Suppose
that ‘p’ is a “static” pointer to a “dynamic” object. Normally, an operator requires its
arguments to be fully static. In this case, the indirection of ‘p’ is not needed to carry out
the addition, and henceforth is should be classified static despite ‘p’ being partially-static.
We consider this extension in Example 5.14. End of Example

5.3 Specifying binding times

Suppose a program is given where all functions, statements and expressions are marked
static (compile time) or dynamic (run time). This section defines a set of rules that
checks whether the annotations are placed consistently. A program where the binding
time separation fulfills the congruence principle and the additional requirements imposed
by the generating-extension transformation is well-annotated.

The analysis developed in this chapter computes an annotation of expressions. In
Section 5.4.7 we describe how a well-annotated program can be derived from an expres-
sion annotation, and furthermore, how a well-annotated program can be derived from a
variable division.

5.3.1 Binding-time types

The type of an expression describes the value the expression evaluates to. The binding
time of an expression describes when the expression can be evaluate to its value. Thus,
there is an intimate relationship between types and binding times.

A binding time B can be static or dynamic:

B ::= S | D | β

where β is a binding time variable ranging over S and D. We use B to range over binding
times. To model the binding time of a value, we extend static types to include binding
time information. For example, a static pointer ‘p’ to a dynamic integer value is denoted

by the binding-time type p :
〈 ∗

S

〉 〈
int

D

〉
.

Definition 5.2 The syntax of a binding time type BT is defined inductively by :

BT ::=
〈

τb
B

〉
Base type

|
〈

τs
B

〉
Struct type

|
〈 ∗

B

〉
BT Pointer type

|
〈

[n]
B

〉
BT Array type

|
〈

(BT∗)
B

〉
BT Function type

4The notion of static pointers are defined in the next section.

161

www.manaraa.com

where τb range over base type specifiers, and τs range over struct/union/enumerator type

specifiers. If T =
〈

τ
B

〉
T1, then T#b denotes the binding time of T , i.e. T#b = B. 2

A binding-time type (bt-type) is an attributed type. We use T to range over both normal
types5 and bt-types when no confusion is likely to occur. We will occasionally use BT to
range over bt-types when needed.

Example 5.6 Let the definitions ‘int x, a[10], *p’ be given and consider the bt-
types:

int x :
〈
int
S

〉

int a[10] :
〈

[10]
D

〉 〈
int
D

〉

int ∗ p :
〈 ∗

S

〉 〈
int
D

〉

The variable ‘x’ is static. The array ‘a’ is completely dynamic. The pointer ‘p’ is a static

pointer to a dynamic object. If T =
〈 ∗

S

〉 〈
int
D

〉
, then T#b = S. End of Example

A pointer is a variable containing an address or the constant ‘NULL’. If the address
is definitely known at specialization time, the pointer can be classified static. Otherwise
it must be classified dynamic. Static pointers can be dereferenced during specialization;
dynamic pointers cannot. Naturally it makes no sense to classify a pointer “dynamic to
a static object”, since the object a dynamic pointer points to must exist in the residual
program. This is captured by the following definition of well-formed types.

Definition 5.3 A bt-type T is well-formed if it satisfies the following requirements.

1. If T =
〈

τ1
B1

〉
. . .

〈
τn
Bn

〉
and there exists an i s.t. Bi = D, then for all j > i: Bj = D.

2. If
〈

(T1,...,Tn)
B

〉
in T , then if there exists an i s.t. Ti#b = D then B = D.

2

The first condition stipulates that if a variable of pointer type is dynamic, then so must the
“dereferenced” type be. The second part states that if a “parameter” in a function type
is dynamic, the binding time of the specifier must be dynamic. Intuitively, if the binding
time of a function type specifier is dynamic, the function takes a dynamic argument.

Example 5.7 The type
〈 ∗

D

〉 〈
int

S

〉
is not well-formed. The type

〈 ∗
S

〉 〈
()
D

〉 〈
int

D

〉
is well-

formed. End of Example

5In the following we often write ‘static type’ meaning the static program type — not a bt-type where
all binding times are static.

162

www.manaraa.com

5.3.2 Binding time classifications of objects

Arrays are treated as aggregates, and thus all entries of an array are assigned the same
binding times. For example, the bt-type

〈
[n]
S

〉 〈
int
D

〉
specifies the type of a static array with

dynamic content. An array is said to be static if it can be “indexed” during specialization.
In this example, it would yield a dynamic object.

Example 5.8 Suppose a pointer ‘p’ is classified by p :
〈 ∗

S

〉 〈
int
S

〉
, and consider the ex-

pression ‘p + 1’. For the expression to make sense, ‘p’ must point into an array, ‘a’, say.
Observe that pointer arithmetic cannot “change” the bt-type of a pointer, e.g. ‘p+1’ can-
not point to a dynamic object, since pointer arithmetic is not allowed to move a pointer
outside an array, (i.e. ‘a’), and arrays are treated as aggregates. End of Example

Structs are classified static or dynamic depending on whether they are split. Static
structs are split into individual variables (or eliminated) during specialization. Given the

bt-type of a variable of struct type:
〈
struct S

B

〉
, the binding time B indicates whether

the struct is split. If B equals D, it is not split, and all members of S shall be dynamic.
Otherwise the struct is split.

5.3.3 The lift relation

Suppose that ‘x’ is an integer variable, and consider the assignment ‘x = c’. Even though
‘x’ is dynamic, ‘c’ is allowed to be static — it can be lifted to run-time. Operationally
speaking, a run-time constant can be built from the value of c at specialization time.

This is not the case for objects of struct type. The ‘obvious’ solution would be to
introduce ‘constructor’ functions, but this may lead to code duplication and introduces
an overhead. Objects of struct type cannot be lifted. Similarly holds for pointers, since
lifting of addresses introduces an implementation dependency. The notion of values that
can be lifted is captured by the relation < on bt-types defined as follows.

Definition 5.4 Define the relation ‘<: BType × BType’ by
〈

τb
S

〉
<

〈
τb
D

〉
, and T1 ≤ T2

iff T1 < T2 or T1 = T2.
6 2

The definition says that only a static value of base type can be lifted to a dynamic value
(of same base type).

Observe that it can be determined on the basis of static program types where lift
(possibly) can occur. For example, in an assignment ‘e1 = e2’ where e1 is of struct type,
no lift operator can possibly be applied, since objects of struct type cannot be lifted.

Example 5.9 Where can a base type value be lifted? It can happen at one of the follow-
ing places: the index of an array indexing, arguments to operator application, arguments
to function calls, and the right hand side expressions of assignments. Further, the subex-
pression of a comma expression may be lifted, if the other is dynamic. Finally, the value
returned by a function may be lifted. End of Example

6We will later allow lift of string constants.

163

www.manaraa.com

5.3.4 Divisions and type environment

A binding-time environment ‘Ẽ : Id → BType’ is a map from identifiers to bt-types.
Given a type T and a bt-type BT , BT suits T if they agree on the static program type.
An environment suits a set of definitions x : Tx if it is defined for all x and Ẽ(x) suits Tx.

A type environment ‘T̃ E : TName → BType × (Id → BType)’ is a map from type
names to bt-types and binding-time environments. Intuitively, if S is a struct type name,
and T̃ E(S) =

〈〈
structS

B

〉
, Ẽ ′

〉
, then B indicates whether the struct is static (i.e. can be

split), and Ẽ ′ represents the bt-types of the members (e.g. T̃ E(S) ↓ 2(x) is the binding
time of a member ‘x’).

Example 5.10 Define ‘struct S { int x; struct S *next; }’. The map

T̃ E =
[
S 7→

〈〈
struct S

S

〉
,
[
x 7→

〈
int

D

〉
, next 7→

〈 ∗
S

〉 〈
struct S

S

〉]〉]

describes that member ‘x’ is dynamic, ‘next’ is a static pointer, and ‘struct S’ can be
split.

For ease of notation, we omit product projections when they are clear from the context.
For example, we write T̃ E(S) for the binding time of S, and T̃ E(S)(x) for the binding
time of member x. End of Example

To be consistent, the binding time of a struct specifier of a variable must agree with
the binding time recorded by a type environment.

Definition 5.5 Let Ẽ be a binding time environment and T̃ E a type environment. Then
Ẽ is said to agree with T̃ E if for every x ∈ dom(Ẽ), if Ẽ(x) contains a specifier

〈
struct S

B

〉
,

then T̃ E(S) ↓ 1 =
〈
struct S

B

〉
, and similarly for ‘union’. 2

An operator type assignment is a map ‘O : Op → BType’ assigning bt-types to
operators, where all binding times are variables. Let ‘stat : BType → BType’ be the
function that returns a copy of a bt-type where all binding times are S. Let ‘dyn :
BType → BType’ be defined similarly.

Example 5.11 Consider the “integer plus” +int,int operator, and the “pointer and in-

teger” +ptr,int operator. Then O(+int,int) =

〈
(

〈
int
β1

〉
,

〈
int
β2

〉
)

B

〉 〈
int
β

〉
, and O(+ptr,int) =

〈
(

〈
∗

β1

〉〈
int
β2

〉
,

〈
int
β3

〉
)

B

〉 〈 ∗
β4

〉 〈
int
β5

〉
.

We have ‘dyn(
〈 ∗

S

〉 〈
int
D

〉
) =

〈 ∗
D

〉 〈
int
D

〉
’. End of Example

Recall that overloading of operators is assumed to be resolved during parsing.

164

www.manaraa.com

5.3.5 Two-level binding-time annotation

We adopt the two-level language framework for specifying binding times in programs
[Nielson and Nielson 1992a,Gomard and Jones 1991b]. An underlined construct is dy-
namic while other constructs are static. For example ‘e1[e2]’ denotes a static array
indexing, and ‘e1[e2]’ denotes a dynamic index.7

Example 5.12 The well-known ‘pow()’ program can be annotated as follows, where
‘base’ is static and ‘x’ is dynamic.

int pow(int base, int x)
{

int p = 1;
for (; base--;) p *= x;
return p;

}
It is easy to see that the binding time annotations are “consistent” with the initial binding
time division. End of Example

We omit a formal specification of two-level C. A two-level version of a subset of C has
previously been defined [Andersen 1993b].

5.3.6 Well-annotated definitions

Let d ≡ x : Tx be an annotated declaration. It gives rise to a bt-type BTx that suits Tx.
The relation

`decl: Decl× BType

defined in Figure 44 captures this.

Definition 5.6 Let d be an annotated declaration, and T̃ E a type environment defined
for all type names in d. Then the bt-type BT agree with the type of d if

T̃ E `decl d : BT

where `decl is defined in Figure 44. 2

The definition of `decl uses the relation `type: Type× BType which also is defined by
Figure 44.

In the case of a “pure” declaration, the binding time of the type must be static.
Otherwise it must be dynamic. In the case of definitions, an underlined definition must
posses a dynamic type. Definitions specified ‘residual’ must be dynamic.

The rule for function types uses an auxiliary predicate ‘statdyn’. It is satisfied when
the binding time type is completely static or completely dynamic, respectively.8 The use
of ‘statdyn’ makes sure that a function does not accept partially static arguments.

The ‘statdyn’ predicate could have been specified by an additional set of inference
rules for types, but is omitted due to lack of space.

7Even though it would be more correct to underline the expression constructor, we underline for the
sake of readability the whole expression.

8In the case where a type specifier is a struct, the members must be checked as well.

165

www.manaraa.com

[decl]
T̃ E `type T : BT, BT#b = S

T̃ E `decl pure extern x : T : BT

T̃ E `type T : BT,BT#b = D

T̃ E `type extern x : T : BT

[def]
T̃ E `type T : BT, BT#b = S

T̃ E `decl x : T : BT

T̃ E `type T : BT,BT#b = D

T̃ E `decl x : T : BT

[res]
T̃ E `type T : BT,BT#b = D

T̃ E `decl residual x : T : BT

[base] T̃ E `type 〈τb〉 :
〈

τb
S

〉
T̃ E `type 〈τb〉 :

〈
τb
D

〉

[struct]
T̃ E(S) =

〈
struct S

S

〉

T̃ E `type 〈struct S〉 :
〈
struct S

S

〉 T̃ E(S) =
〈
struct S

D

〉

T̃ E `type 〈struct S〉 :
〈
struct S

D

〉

[ptr]
T̃ E `type T : BT

T̃ E `type 〈∗〉T :
〈 ∗

S

〉
BT

T̃ E `type T : BT,BT#b = D

T̃ E `type 〈∗〉T :
〈 ∗

D

〉
BT

[array]
T̃ E `type T : BT

T̃ E `type 〈[n]〉T :
〈

[n]
S

〉
BT

T̃ E `type T : BT,BT#b = D

T̃ E `type 〈[n]〉T :
〈

[n]
D

〉
BT

[fun]

T̃ E `decl di : BTi, statdyn(BTi)
T̃ E `type T : BT, BTi#b = S

T̃ E `type 〈(di)〉T :
〈

(BTi)
S

〉
BT

T̃ E `decl di : BTi, statdyn(BTi)
T̃ E `type T : BT,BT#b = D

T̃ E `type 〈(di)〉T :
〈

(BTi)
D

〉
BT

Figure 44: Binding time inference rules for declarations

Lemma 5.1 If d is a declaration and T a type such that T̃ E `decl d : T , then T is
well-formed.

Proof Suppose that T̃ E `decl d : T , and consider the two condition in Definition 5.3.
The first is satisfied due to the condition BT#b = D in the dynamic “versions” of the
rules. The second condition is fulfilled due to the condition BTi#b = S in the static
version of the rule for function type specifiers. 2

Suppose that D is a type definition and T̃ E is a type environment. The agreement
between a type definition and an annotated definition is captured by

`tdef : TDef

defined in Figure 45.

Definition 5.7 Let D be an annotated type definition. The type environment T̃ E agrees
with the annotation of D if

T̃ E `tdef D : •
where `tdef is defined in Figure 45. 2

Lemma 5.2 Let T̃ E be a type environment, and define Ẽ = [x 7→ BT] for declaration
x : T where T̃ E `decl x : T : BT . Then Ẽ agrees with T̃ E .

Proof Obvious. 2

166

www.manaraa.com

[struct]
T̃ E(S) =

〈
struct S

S

〉

T̃ E `type Tx : T̃ E(S)(x)
T̃ E `tdef struct S { x : Tx } : •

T̃ E(S) =
〈
struct S

D

〉

T̃ E `type Tx : T̃ E(S)(x), Tx#b = D

T̃ E `tdef struct S { x : Tx } : •

[union]
T̃ E(U) =

〈
union U

S

〉

T̃ E `type Tx : T̃ E(U)(x)
T̃ E `tdef union U { x : Tx } : •

T̃ E(U) =
〈
union U

D

〉

T̃ E `type Tx : T̃ E(U)(x), Tx#b = D

T̃ E `tdef union U { x : Tx } : •
[enum] T̃ E `tdef enum E { x = e } : •

Figure 45: Binding time inference rules for type definitions

5.3.7 Well-annotated expressions

An annotated expression is said to be well-annotated if the binding time separation is
consistent with the division of variables. This is captured by the relation

`exp: Expr× BType

defined in Figures 46 and 47.

Definition 5.8 Suppose an annotated expression e and environments Ẽ and T̃ E are
given, such that Ẽ is defined for all identifiers in e; it suits the underlying types, and
it agree with T̃ E . The expression e is well-annotated if there exists a type T s.t.

Ẽ , T̃ E `exp e : T

where `exp is defined in Figures 46 and 47. 2

The rules are justified as follows.
Constant and string-constants are static. A variable reference is never annotated

dynamic, since all variables are bound to symbolic locations at specialization time, cf.
Chapter 3.

The type of a struct member is given by the type environment. The struct indexing
operator must be annotated dynamic if the struct cannot be split. The rules for pointer
dereference and array indexing are similar in style. The type of value is determined by
the value of the indirection9 and, in the case of arrays, the index. If the index is dynamic,
the indexing cannot be static.

Consider the rules for the address operator. If the subexpression is static, the result
is a static pointer. Otherwise the application must be annotated dynamic, and the result
is a dynamic pointer.10

Example 5.13 The rule for the address operator correctly captures applications such
as ‘&a[e]’ where e is a dynamic expression, but unfortunately also an expression such
‘&a[2]’ where ‘a’ is a array of dynamic values. By rewriting the latter expression into ‘a
+ 2’ the problem can be circumvented. However, applications such as ‘&x’ where ‘x’ is
dynamic inevitably become suspended. End of Example

9We assume that in an array expression e1[e2], e1 is of pointer type.
10See also Section 5.4.8 about function identifiers.

167

www.manaraa.com

[const] Ẽ , T̃ E `exp c :
〈

τb
S

〉

[string] Ẽ , T̃ E `exp s :
〈 ∗

S

〉 〈
char

S

〉

[var] Ẽ , T̃ E `exp v : Ẽ(v)

[struct]
Ẽ , T̃ E `exp e1 :

〈
struct S

S

〉

Ẽ , T̃ E `exp e1.i : T̃ E(S)(i)

Ẽ , T̃ E `exp e1 :
〈
struct S

D

〉

Ẽ , T̃ E `exp e1.i : T̃ E(S)(i)

[indr]
Ẽ , T̃ E `exp e1 :

〈 ∗
S

〉
T1

Ẽ , T̃ E `exp ∗e1 : T1

Ẽ , T̃ E `exp e1 :
〈 ∗

D

〉
T1

Ẽ , T̃ E `exp ∗e1 : T1

[array]

Ẽ , T̃ E `exp e1 :
〈 ∗

S

〉
T1

Ẽ , T̃ E `exp e2 :
〈

τb
S

〉

Ẽ , T̃ E `exp e1[e2] : T1

Ẽ , T̃ E `exp e1 :
〈 ∗

D

〉
T1

Ẽ , T̃ E `exp e2 :
〈

τb
B2

〉

Ẽ , T̃ E `exp e1[e2] : T1

[address]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp &e1 :
〈 ∗

S

〉
T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp &e1 :
〈 ∗

D

〉
T1

[unary]

Ẽ , T̃ E `exp e1 : T1

O(o) = (
〈

(T ′1)
β

〉
)T ′, T1 ¹ stat(T ′1)

Ẽ , T̃ E `exp o e1 : stat(T ′)

Ẽ , T̃ E `exp e1 : T1

O(o) =
〈

(T ′1)
β

〉
T ′, T1 ¹ dyn(T ′1)

Ẽ , T̃ E `exp o e1 : dyn(T ′)

[binary]

Ẽ , T̃ E `exp ei : Ti

O(o) =
〈

(T ′i)
β

〉
T ′, Ti ¹ stat(T ′i)

Ẽ , T̃ E `exp e1 o e2 : stat(T ′)

Ẽ , T̃ E `exp ei : Ti

O(o) =
〈

(T ′i)
β

〉
T ′, Ti ¹ dyn(T ′i)

Ẽ , T̃ E `exp e1 o e2 : dyn(T ′)

[alloc]
Ẽ(l) =

〈 ∗
S

〉 〈
struct T

S

〉

Ẽ , T̃ E `exp allocl(T) :
〈 ∗

S

〉 〈
struct T

S

〉 Ẽ(l) =
〈 ∗

S

〉 〈
struct T

D

〉

Ẽ , T̃ E `exp allocl(T) :
〈 ∗

D

〉 〈
struct T

D

〉

[ecall]

Ẽ , T̃ E `exp f :
〈

(T ′i)
B

〉
Tf

Ẽ , T̃ E `exp ei : Ti, Ti#b = S
f specified pure
Ẽ , T̃ E `exp f(e1, . . . , en) : stat(Tf)

Ẽ , T̃ E `exp f :
〈

(T ′i)
B

〉
Tf

Ẽ , T̃ E `exp ei : Ti

Ti ¹ dyn(T ′i)
Ẽ , T̃ E `exp f(e1, . . . , en) : dyn(Tf)

[call]

Ẽ , T̃ E `exp e0 :
〈

(T ′i)
S

〉
T0

Ẽ , T̃ E `exp ei : Ti

Ti ¹ T ′i , T ¹ T0

Ẽ , T̃ E `exp e0(e1, . . . , en) : T

Ẽ , T̃ E `exp e0 :
〈

(T ′i)
D

〉
T ′0

Ẽ , T̃ E `exp ei : Ti

Ti ¹ T ′i , T
′
0 ¹ T0

Ẽ , T̃ E `exp e0(e1, . . . , en) : T0

Figure 46: Binding time inference rules for expressions (part 1)

The rules for unary and binary operator applications use the map O. If both arguments
are static, a fresh instance of the operator’s type is instantiated. Notice the usage of lift
in the rule for dynamic applications to assure that possibly static values can be lifted.
The rules for unary operator applications are analogous.

The result of an ‘alloc’ call is given by the environment.11

The annotation of a call to an external function depends on whether the function is
‘pure’. In the affirmative case, a call where all parameters are static can be annotated
static. Otherwise the call must be suspended.

11Consider the label of an alloc to be the name of a pointer variable.

168

www.manaraa.com

[pre-inc]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp ++e1 : T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp ++e1 : T1

[post-inc]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp e1++ : T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp e1++ : T1

[assign]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp e2 : T2, T2#b = S

Ẽ , T̃ E `exp e1 aop e2 : T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp e2 : T2, T2 ¹ T1

Ẽ , T̃ E `exp e1 aop e2 : T1

[assign-se]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp e2 : T2, T2#b = STf#b = S

Ẽ , T̃ E `exp e1 aop e2 : T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp e2 : T2, T2 ¹ T1

Ẽ , T̃ E `exp e1 aop e2 : T1

[assign-dse]

Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp e2 : T2, T2#b = S
Tf#b = S

Ẽ , T̃ E `exp e1 aop e2 : T1

Ẽ , T̃ E `exp e1 : T1, T1#b = D

Ẽ , T̃ E `exp e2 : T2, T2 ¹ T1

Ẽ , T̃ E `exp e1 aop e2 : T1

[comma]
Ẽ , T̃ E `exp e1 : T1, T1#b = S

Ẽ , T̃ E `exp e2 : T2, T2#b = S

Ẽ , T̃ E `exp e1, e2 : T2

Ẽ , T̃ E `exp e1 : T1, T1 ¹ dyn(T1)
Ẽ , T̃ E `exp e2 : T2, T2 ¹ dyn(T2)
Ẽ , TE `exp e1, e2 : dyn(T2)

[sizeof] Ẽ , T̃ E `exp sizeof(T) :
〈
size t

D

〉

[cast]

Ẽ , T̃ E `exp e1 : T1

T̃ E `type Te : T
Cast(T1, T), T1#b = S

Ẽ , T̃ E `exp (T)e1 : T

Ẽ , T̃ E `exp e1 : T1

T̃ E `type Te : T
¬Cast(T1, Te)
Ẽ , T̃ E `exp (T)e1 : T

Figure 47: Binding time inference rules for expressions (part 2)

The cases for calls to user-defined functions and indirect calls are treated as one for
simplicity. The function designator must possess a function type, and the type of the
actual must be lift-able to the formal argument types. In the case of a static application,
all the parameters must be static.

The rules for pre- and post-increment expressions are straightforward. Consider the
rules for assignments and recall that assignments to non-local objects and side-effects
under conditional must be suspended. The pure syntactic criteria is conservative. In
Section 5.4.8 we ameliorate the definition.

The first rules cover non-side-effecting assignments. The rules [assign-se] and [assign-
dse] checks side-effecting assignments and conditional side-effecting assignments respec-
tively.

We use Tf to denote the return type of the function containing the expression. Thus,

if f contains the assignment, the type of f is
〈

(Ti)
B

〉
Tf .

The binding time of a comma expression depends on the binding time of both the
expressions, and the implementation-defined ‘sizeof’ special form must always be sus-
pended. Finally, the rules for cast expressions are expressed via the predicate ‘Cast’

169

www.manaraa.com

defined below. The type Te1 is the type of the subexpression, and Te is the new type.
Define ‘Cast : Type× Type → Boolean’ by

Cast(Tfrom, Tto) = case(Tfrom, Tto)
(〈τ ′b〉 , 〈τ ′′b 〉) = true
(〈〈∗〉T ′, 〈∗〉T ′′〉) = Cast(T ′, T ′′)
(〈〈τb〉 , 〈∗〉T ′′〉) = false
(〈〈∗〉T ′, 〈τb〉〉) = false

compare with the analysis in Section 5.2.8.

Example 5.14 To allow partially-static operator applications, the following rule for bi-
nary plus in pointers and integers can be used.

Ẽ , T̃ E `exp ei : Ti, Ti#b = S

Ẽ , T̃ E `exp e1 +∗int,int e2 : T1

where only the pointer specifier and the integer value is demanded static, not the indirec-
tion of the pointer. End of Example

5.3.8 Well-annotated statements

Well-annotatedness of a statement depends mainly on well-annotatedness of contained
expressions. This is expressed by the means of the inference rules

`stmt: Stmt

depicted in Figure 48.

Definition 5.9 Let S be an annotated statement in a function f . Let Ẽ, T̃ E be a binding
time environment and a type environment, such that Ẽ is defined for all identifiers in S
and Ẽ agrees with T̃ E . Then S is well-annotated if

Ẽ , T̃ E `stmt S : •
where `stmt is defined in Figure 48. 2

The rules are motivated as follows.
If a function contains a dynamic statement, the function must be residual, i.e. have a

dynamic return type. This is reflected in the system by the side condition Tf#b = D in
the dynamic rules.

An empty statement can always be annotated static, and the binding time of an ex-
pression statement depends on the expression. An if or switch12 statement is dynamic if
the test expression is dynamic. Furthermore, the sub-statements must be well-annotated.

Consider the rules for loops. The binding time of the loop construction depends on
the test expression. The binding time of initializers does not necessarily influence the
binding time of a loop, although it typically will be the case.

Finally, consider the rules for return. If the containing function is residual, the
statement must be dynamic: a residual function must return a value at run-time — not
at specialization time. In the case of base type values, the lift operator may be applied.

12For simplicity we assume ‘break’ and ‘continue’ are expressed via ‘goto’.

170

www.manaraa.com

[empty] Ẽ , T̃ E `stmt; : •

[expr]
Ẽ , T̃ E `exp e : T, T#b = S

Ẽ , T̃ E `stmt e : •
Ẽ , T̃ E `exp e : T, T#b = D
Tf#b = D

Ẽ , T̃ E `stmt e : •

[if]

Ẽ , T̃ E `exp e : T, T#b = S

Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt S2 : •
Ẽ , T̃ E `stmt if (e) S1 else S2 : •

Ẽ , T̃ E `exp e : T, T#b = D

Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt S2 : •
Tf#b = D

Ẽ , T̃ E `stmt if (e) S1 else S2 : •

[switch]
Ẽ , T̃ E `exp e : T, T#b = S

Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt switch (e) S1 : •

Ẽ , T̃ E `exp e : T, T#b = D

Ẽ , T̃ E `stmt S1 : •
Tf#b = D

Ẽ , T̃ E `stmt switch (e) S1 : •

[while]
Ẽ , T̃ E `exp e : T, T#b = S

Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt while (e) S1 : •

Ẽ , T̃ E `exp e : T, T#b = D

Ẽ , T̃ E `stmt S1 : •
Tf#b = D

Ẽ , T̃ E `stmt while (e) S1 : •

[do]
Ẽ , T̃ E `exp e : T, T#b = S

Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt do S1 while (e) : •

Ẽ , T̃ E `exp e : T, T#b = D

Ẽ , T̃ E `stmt S1 : •
Tf#b = D

Ẽ , T̃ E `stmt do S1 while (e) : •

[for]

Ẽ , T̃ E `exp ei : Ti, T2#b = S

Ẽ , T̃ E `stmt S1 : •
Tj#b = D ⇒ Tf#b = D, j = 1, 3
Ẽ , T̃ E `stmt for (e1;e2;e3) S1 : •

Ẽ , T̃ E `exp ei : Ti, T2#b = D

Ẽ , T̃ E `stmt S1 : •
Tf#b = D

Ẽ , T̃ E `stmt for (e1;e2;e3) S1 : •

[label]
Ẽ , T̃ E `stmt S1 : •
Ẽ , T̃ E `stmt l : S1 : •

[goto] Ẽ , T̃ E `stmt goto m : •

[return]
Ẽ , T̃ E `exp e : T, T#b = S, Tf#b = S

Ẽ , T̃ E `stmt return e : •
Ẽ , T̃ E `exp e : T, Tf#b = D, T ¹ Tf

Ẽ , T̃ E `stmt return e : •

[block]
Ẽ , T̃ E `stmt Si : •
Ẽ , T̃ E `stmt {Si} : •

Figure 48: Binding-time inference rules for statements

5.3.9 Well-annotated functions

Recall that we solely consider functions that are annotated for specialization and (pos-
sibly) shared. Well-annotatedness of a function depends on the consistency between the
parameters and local variables, and the statements. This is expressed in the rules

`fun: Fun

defined in Figure 49.

171

www.manaraa.com

[share]

Ẽ(f) =
〈

(BTi)
S

〉
BTf , di ≡ xi : Ti

T̃ E `decl xj : Tj : BTj , dj ≡ xj : Tj

Ẽ [xi 7→ BTi, xj 7→ BTj], T̃ E `stmt Sk : •
BTi#b = S, statdyn(BTi)
BTf#b = S, statdyn(BTf)
Ẽ , T̃ E `fun 〈Tf , di, dj , Sk〉 : •

Ẽ(f) =
〈

(BTi)
B

〉
BTf , di ≡ xi : Ti

T̃ E `decl xj : Tj : BTj , dj ≡ xj : Tj

Ẽ [xi 7→ BTi, xj 7→ BTj], T̃ E `stmt Sk : •
statdyn(BTi)BTf#b = D, statdyn(BTf)
Ẽ , T̃ E `fun 〈Tf , di, dj , Sk〉 : •

Figure 49: Binding-time inference rules for functions

Definition 5.10 Let f be a function in a program p. Let Ẽ be a binding type environment
defined on all global identifiers in p, and T̃ E a type environment for p with which Ẽ agrees.

The function f is well-annotated if

Ẽ , T̃ E `fun f : •
where `fun is defined in Figure 49. 2

The rules can be explained as follows. The type of the function is given by the bt-type
environment which includes the type of the parameters. The bt-type of local variables
is determined by the means of the inference rules for definitions. In the environment
extended with bt-types for parameters and locals, the consistency of the annotation of
statements is checked.

5.3.10 Well-annotated C programs

The well-annotatedness of a C program depends on type definitions, global declarations,
and function definitions. The type definitions define a type environment which the bt-
type environment for variables must agree with. The functions must be well-annotated
in the context of the type and binding time environment.

Definition 5.11 Let p = 〈T ,D,F〉 be an annotated program. It is well-annotated pro-
vided

1. T̃ E is a type environment s.t. T̃ E `tdef t : •, t ∈ T ;

2. Ẽ is a binding time environment defined for all identifiers in p, s.t. T̃ E `decl d : Ẽ(x),
where d ≡ x : Tx ∈ D, and

3. Ẽ , T̃ E `fun f : •, f ∈ F ,

cf. Definitions 5.7, 5.6 and 5.10. 2

Theorem 5.1 A well-annotated program fulfills the congruence principle and the require-
ments for the generating extension transformation.

Proof By the justification given for the inference systems. 2

172

www.manaraa.com

5.4 Binding time inference

The previous section specified conditions for a program to be well-annotated. The problem
of binding-time analysis is the opposite: given an initial division of the input parameters,
to find a well-annotated version of the program. Naturally, by making all constructs
dynamic, an well-annotated version can easily be found,13 but we desire “most-static”
annotation.

The analysis we present is constraint based and works as follows. First a constraint
system is collected by a single traversal of the program’s syntax tree. The constraints
capture the dependencies between an expression and its subexpressions. Next, the system
is normalized by a set of rewrite rules. We show that the rules are normalizing, and hence
that constraint systems have a normal form. Finally, a solution is found. It turns out
that solving a normalized constraint system is almost trivial.

Given a solution, it is easy to derive a well-annotated program. We show that the an-
notation is minimal in the sense that all other well-annotations will make more constructs
dynamic.

5.4.1 Constraints and constraint systems

We give a constraint-based formulation of the inference systems presented in the previous
section. A constraint system is a multi-set of formal constraints of the form

T1 = T2 Equal constraint
T1 ¹ T2 Lift constraint
B1 > B2 Dependency constraint

where Ti range over bt-types and Bi range over binding times. In addition, the types T1

and T2 in a constraint T1 ¹ T2 must agree on the underlying static program types.14 For
instance, a constraint

〈
int
S

〉
¹

〈 ∗
S

〉 〈
double

D

〉
illegal. We use C to range over constraint

systems.
Define ≺∗∈ BType× BType, >∗ ∈ BTime× BTime:

〈
τb
S

〉
≺∗

〈
τb
D

〉
Lift base

D >∗ D Dynamic dependency
S >∗ B No dependency

where τb range over base type specifiers, and B range over binding times. Define T1 ¹∗
T2

def⇐⇒ T1 ¹ T2 or T1 = T2.
Intuitively, the lift constraint corresponds to the lift < relation used in the previous

chapter; the dependency constraint captures “if B1 is dynamic then B2 must also be
dynamic”.

Definition 5.12 Let C be a constraint system. A solution to C is a substitution S :
BTVar → BTime such that for all constraint c ∈ C:

13Obviously, constants should be kept static.
14This requirement will be fulfilled by the construction of constraint systems.

173

www.manaraa.com

ST1 = ST2 if c ≡ T1 = T2

ST1 ¹∗ ST2 if c ≡ T1 ¹ T2

SB1 >∗ SB2 if c ≡ B1 > B2

where application of substitution is denoted by juxtaposition, and S is the identify on all
binding time variable not appearing in C. The set of solutions is denoted by Sol(C). 2

Let binding times be ordered by S < D and extend point-wise to solutions. Obviously,
if a constraint system has a solution it has a minimal solution that maps more binding
time variables to S than all other. The constraint systems of interest all have at least one
solution, and thus a minimal solution.

Example 5.15 The system

{
〈
int

B1

〉
¹

〈
int

B2

〉
,
〈 ∗

B3

〉 〈
int

B4

〉
¹

〈 ∗
B5

〉 〈
int

B6

〉
, D > B3}

has the solution S = [B1, B2 7→ S,B3, B4, B5, B6 7→ D], and it is minimal. The system

{
〈
int
B1

〉
¹

〈
int
S

〉
, D > B1} has no solution. End of Example

5.4.2 Binding time attributes and annotations

Attribute all program types with fresh binding time variables, e.g. if ‘p’ has type 〈∗〉 〈int〉,
its attributed type is

〈 ∗
β1

〉 〈
int
β2

〉
. In practice, this step is be done during parsing. The aim

of the analysis is to instantiate the binding time variables consistently. An instantiation
of the variables is given by a substitution S : BTVar → {S, D}.

For a substitution S, let ‘AnnS(p)’ be an annotation function that underlines pro-
gram constructs in accordance with the instantiation. For example, if e is an array index
‘e1[e2]’ and e1 has the instantiated type

〈 ∗
D

〉 〈
int
D

〉
, the index shall be underlined. We

omit formal specification. The key point is to observe that the inference rules stating
well-annotatedness are deterministic on the bt-types. Overload Ann to declarations, ex-
pressions, statements and functions.

The previous section employed a binding time environment Ẽ for mapping an identifier
to its bt-type. However, when we assume that all variable definitions (and declarations)
are assigned unique bt-types, the mapping Ẽ(x) = Tx is implicit in the program. In the
following we write Tx for the bt-type of a definition (of) x.15 If f is a function identifier,

we write
〈

(Ti)
B

〉
Tf for its type; notice that Tf denotes the type of the returned value.

Example 5.16 A (partially) attributed program (‘strindex’; Kernighan and Ritchie
page 69) is shown in Figure 50. All expressions and variable definitions are annotated

with their type. The bt-type
〈 ∗

βsi

〉 〈
char
β∗si

〉
equals Tstrindex. End of Example

Similarly, the type environment T̃ E is superfluous; for a struct S we write TS for the
bt-type of S (= T̃ E(S) ↓ 1), and TSx for the bt-type of field x (= T̃ E(S)(x)).

Given an attributed definition x : Tx we say that the environment Ẽ agrees with
if Ẽ(x) = Tx. Similarly for type environments. Application of a substitution to an
environment is denoted by juxtaposition.

15Assume for ease of presentation unique names.

174

www.manaraa.com

/* strindex: return first position of p in s */

char *:
〈

∗
β si

〉〈
char
β ∗si

〉
strindex(char *p:

〈
∗

β p

〉〈
char
β ∗p

〉
, char *s:

〈
∗

β s

〉〈
char
β ∗s

〉
)

{
int k:

〈
int
β k

〉
;

for (; * != ’\0’; s++) {
for (k = 0; p[k] != ’\0’ && p[k] == s[k]; k++);

if (p:
〈
char
β 1

〉〈
char
β 2

〉
[k:

〈
int
β 3

〉
]:

〈
char
β 4

〉
== ’\0’:

〈
char
β 5

〉
) return s:

〈
∗

β 6

〉 〈
char
β 7

〉
;

}
return NULL:

〈
∗

β 8

〉〈
char
β 9

〉
;

}

Figure 50: Binding-time type annotated program

[decl]
`ctype T1 : •
`cdecl extern x : T : • {D > T#b}

[pure]
`ctype T1 : •
`cdecl pure extern x : T1 : • {}

[def]
`ctype T1 : •
`cdecl x : T1 : • {}

[res]
`ctype T1 : •
`cdecl residual x : T : • {D > T#b}

[base] `ctype
〈

τb
β

〉
: • {}

[struct] T̃ E `ctype
〈
struct S

β

〉
: • {

〈
struct S

β

〉
= TS}

[ptr]
`ctype T1 : •
`ctype

〈
∗
β

〉
T1 : • {β > T1#b}

[array]
`ctype T1 : •
`ctype

〈
[n]
β

〉
T1 : • {β > T1#b}

[fun]
`cdel xi : Ti : •, di ≡ x : Ti `ctype T : •
`ctype

〈
(di)

β

〉
T : • {β > T#b, Ti#b > β} ∪⋃

i statdyn(Ti)

Figure 51: Constraint-based binding-time inference for declarations

5.4.3 Capturing binding times by constraints

This section gives a constraint-based characterization of well-annotated programs. The
reformulation of the inference systems of the previous section is almost straightforward.
For each expression, constraints connecting the bt-types of the expression and its subex-
pressions are generated, and furthermore, constraints capturing global dependencies, e.g.
that a return statement in a dynamic function must be dynamic, are added. We prove
below that a solution to a constraint system corresponds to a well-annotated program.

Declarations and type definitions

The set of constraints generated for a declaration is defined inductively in Figure 51.

175

www.manaraa.com

Observe that the rules are deterministic and no value, besides constraints, is “re-
turned”. Thus, the constraints can be generated by a traversal over the syntax tree where
constraints are accumulated in a global data structure.

The function ‘statdyn’, used by the rule for function types, is defined as follows.
For a bt-type

〈
τ1
β1

〉
. . .

〈
τn
βn

〉
, it returns the set of constraints

⋃
i{βi+1 > βi}. If a type

specifier
〈
struct S

β

〉
, occurs in T , statdyn(T) adds the dependencies {TSx#b > TS#b} for

all members x of S.
Intuitively, given a type T , if the constraints statdyn(T) are added to the constraint

set, a solution must either map all binding times in T to dynamic or to static. In the
case of struct types, the dependencies assure that if one member is dynamic, the struct
becomes dynamic (forcing all members to be dynamic).

Example 5.17 Assume the struct definition ‘struct S { int x, int y } s’. We have

statdyn(Ts) = {TSx#b > TS#b, TSy#b > TS}
Assume that y is dynamic, that is TSy#b = D. Then TS#b must be dynamic, and also TSx

(the latter follows from the constraints generated for type definitions, see below). This is
used for preventing partially static parameters. End of Example

Lemma 5.3 Let d ∈ Decl in a program p. The constraint system for d as defined by
Figure 51 has a minimal solution S0. Let T̃ E be an environment that agrees with p. Then

S0(T̃ E) `decl AnnS0(d) : S0(Td)

where Td is the bt-type of d.

The lemma says that d is well-annotated under the solution to the constraint system.

Proof To see that a solution exists, notice that the substitution that maps all variables
to D is a solution.

Suppose that d ≡ x : T . Consider first the type T . Proof by induction on the number
of type specifiers. In the base case, T is either a base type specifiers or a struct type
specifier. The well-annotatedness follows from the (unspecified) definition of Ann. In the
inductive case, (ptr, array, fun), the cases for [ptr] and [array] are obvious. Notice the
dependency constraints guarantee that the bt-types are well-formed. Consider the rule
for function types. The second dependency constraint makes sure that if one parameter
is dynamic, a solution must map the binding time variable β to dynamic, as required.

Well-annotatedness of d follows easily. 2

Suppose now that T is a type definition. The constraint-based formulation of binding
time inference is stated in Figure 52.

Lemma 5.4 Let T ∈ TDef in a program p. The constraint system for T as defined by
Figure 52 has a minimal solution S0. Let T̃ E be an environment that agrees with p. Then

S0(T̃ E) `tdef AnnS0(T) : •

Proof By inspection of the rules. 2

176

www.manaraa.com

[struct]
`ctype Tx : •
`ctdef struct S { x : Tx } : • {TS#b > Tx#b}

[union]
`ctype Tx : •
`ctdef union U { x : Tx } : • {TU#b > Tx#b}

[enum] `ctdef enum E { x = e } : • {}

Figure 52: Constraints generated for type definition

[const] `cexp c :
〈

τb
β

〉
{
〈

τb
β

〉
=

〈
τb
S

〉
}

[string] `cexp s :
〈
∗
β

〉〈
char

β1

〉
{
〈
∗
β

〉〈
char

β1

〉
=

〈
∗
β

〉 〈
char

S

〉
}

[var] `cexp v : T {T = Tv}
[struct]

`cexp e1 :
〈
struct S

β1

〉

`cexp e1.i : T
{
〈
struct S

β1

〉
= TS , T = TSi}

[indr]
`cexp e1 :

〈
∗
β1

〉
T1

`cexp ∗e1 : T
{T = T1}

[array]
`cexp e1 :

〈
∗
β1

〉
T1 `cexp e2 :

〈
τb
β2

〉

`cexp e1[e2] : T
{T = T1, β2 > β1}

[address]
`cexp e1 : T1

`cexp &e1 :
〈
∗
β

〉
T

{T = T1, T1#b > β}

[unary] `cexp e1 : T1, T
′
1 = T1 `ctype T : •

`cexp o e1 : T
{T1 ¹ T ′1, T = T ′, T1#b > T#b, T#b > T ′1#b}

[binary] `cexp ei : Ti, T ′i = Ti `ctype T : •
`cexp e1 o e2 : T

{Ti ¹ T ′i , Ti#b > T#b, T#b > T ′i#b}
[alloc] `cexp allocl(S) : T {T = Tl}
[ecall] `cexp ei : Ti, T

′
i = Ti

`cexp f(e1,. . . ,en) : T
{Ti ¹ T ′i , T#b > T ′i#b, Ti#b > T#b}

[call] `cexp ei : Ti `cexp e0 :
〈

(i : T ′i)
β

〉
T ′

`cexp e0(e1, . . . , en) : T
{Ti ¹ T ′i , T

′ ¹ T}

Figure 53: Constraint-based binding-time inference for expressions (part 1)

Expressions

The inference system for expressions is given in the Figure 53 and 54. Recall that Tv

denotes the bt-type assigned to v.

Observe that the value-flow analysis described in Chapter 2 renders unification of the
fields in a struct assignment ‘s = t’ superfluous. The types of ‘s’ and ‘t’ are equal. In
practice this is a major gain since unification of struct types is expensive.

The rules for unary and binary operator applications, and extern function application
relates the type T of an argument with an equivalent type T (denoting a “fresh” instance
of T). This implements lifting of arguments. Notice that it is the over-lined type that is
suspended if the application is dynamic.

The rule for casts uses a function Cast to generate constraints, defined as follows.

177

www.manaraa.com

[pre-inc]
`cexp e1 : T1

`cexp ++e1 : T
{T = T1}

[post-inc]
`cexp e1 : T1

`cexp e1++ : T
{T = T1}

[assign]
`cexp e1 : T1 `cexp e2 : T2

`cexp e1 aop e2 : T
{T2 ¹ T1, T = T1}

[assign-se]
`cexp e1 : T1 `cexp e2 : T2

`cexp e1 aop† e2 : T
{T2 ¹ T1, T = T1, Tf#b > T1#b}

[assign-cse]
`cexp e1 : T1 `cexp e2 : T2

`cexp e1 aop ‡ e2 : T
{T2 ¹ T1, T = T1, Tf#b > T1#b}

[comma]
`cexp e1 : T1 `cexp e2 : T2

`cexp e1, e2 : T
{T2 ¹ T, T1#b > T2#b}

[sizeof] `cexp sizeof(T) : T {T =
〈
size t

D

〉
}

[cast]
`cexp e1 : T1

`cexp (T)e1 : T
Cast(T1, T)

Figure 54: Constraint-based binding-time inference for expressions (part 2)

Cast(Tfrom, Tto) = case(Tfrom, Tto)

(
〈

τ ′
b

β1

〉
,
〈

τ ′′
b

β2

〉
) = {β1 > β2}

(
〈 ∗

β1

〉
T ′,

〈 ∗
β2

〉
T ′′) = {β1 > β2} ∪ Cast(T ′, T ′′)

(
〈

τb
β1

〉
,
〈 ∗

β2

〉
T ′′) = {D > β2}

(
〈 ∗

β1

〉
T ′,

〈
τb
β2

〉
) = {D > β2}

Notice the similarity with the definition in Section 5.3.

Lemma 5.5 Let e ∈ Expr in a program p. The constraint system for e as defined by
Figures 53 and 54 has a minimal solution S0. Let Ẽ, T̃ E be environments that agree with
p. Then

S0(Ẽ), S0(T̃ E) `exp AnnS0(e) : S0(Te)

where Te is the bt-type of e.

Proof The constraint system clearly has a solution. Proof by structural induction.
The base cases [const], [string] and [var] follow immediately.
The inductive cases are easy to check. For example, case [array]: Suppose that the

solution maps β1 to S. Due to the constraint β2 > β1, β2 is must be S. By the induction
hypothesis, e1 and e2 are well-annotated, and the expression is a well-annotated static
array expression. Now suppose that the solution maps β1 to D. Underlining the array
index makes the expression well-annotated. 2

178

www.manaraa.com

[empty] `cstmt; : • {}
[exp]

`cexp e : T
`cstmt e : • {T#b > Tf#b}

[if]
`cexp e : T `cstmt S1 : • `cstmt S2 : •
`cstmt if (e) S1 else S2 : • {T#b > Tf#b}

[switch]
`cexp e : T `cstmt S1 : •
`cstmt switch (e) S1 : • {T#b > Tf#b}

[case]
`cstmt S1 : •
`cstmt case e: S1 : • {}

[default]
`cstmt S1 : •
`cstmt default: S1 : • {}

[while]
`cexp e : T `cstmt S1 : •
`cstmt while (e) S1 : • {T#b > Tf#b}

[do]
`cexp e : T `cstmt S1 : •
`cstmt do S1 while (e) : • {T#b > Tf#b}

[for]
`cexp ei : Ti `cstmt S1 : •
`cstmt for (e1;e2;e3) S1 : • {Ti#b > Tf#b}

[label]
`cstmt S1 : •
`cstmt l : S1 : • {}

[goto] `cstmt goto m : • {}
[return]

`cexp e : T
`cstmt return d

{T ¹ Tf}

[block]
`cstmt Si : •
`cstmt {Si} : • {}

Figure 55: Constraint-based inference rules for statements

Statements

Let s be a statement in a function f . Recall that Tf denotes the return type of f . The
inference rules and constraints for statements are displayed in Figure 55.

Lemma 5.6 Let s ∈ Stmt in a function f in a program p. The constraint system cor-
responding to s, as defined by Figure 55, has a minimal solution S0. Let Ẽ and T̃ E be
environments that agree with p. Then

S0(Ẽ), S0(T̃ E) `stmt AnnS0(S) : •

Proof It it easy to see that the constraint system has a solution. The proof of well-
annotatedness is established by structural induction on statements.

The only interesting case is [return]. Suppose that the solution maps Tf#b to S. Due
to the constraint T ¹ Tf , the binding of the return value must be static. On the other
hand, if the function is dynamic by the solution, the constraint assures that the value is
lift-able, as required by the well-annotatedness rules. 2

179

www.manaraa.com

[share]
`cdecl dj : • `cstmt Sk : •
`cfun 〈Tf , di, dj , Sk〉 : • statdyn(di)

Figure 56: Constraint-based binding time inference for functions

Functions

Figure 56 defines the constraint generated for functions.

Lemma 5.7 Let f ∈ Fun in a program p. The constraint system for f as defined in
Figure 56 has a minimal solution S0. Let Ẽ and T̃ E be environments that agree with p.
Then

S0(Ẽ), S0(T̃ E) `fun AnnS0(f) : •

Proof By inspection of the rule and Lemmas 5.3 and 5.6. 2

Program

The constraint definition for a program is defined by the following definition.

Definition 5.13 Let p ≡ 〈T ,D,F〉 be a program. Let T̃ E be a type environment that
agree with T . Define:

1. Ct to be the constraint system generated due to `ctdef t : • for all t ∈ T .

2. Cd to be the constraint system generated due to `cdecl d : T for all d ∈ D.

3. Cf to be the constraint system generated due to `cfun f : • for all f ∈ F .

4. C0 = {D > Txd
}, where xd are the dynamic variables in the initial division.

The constraint system for p is then

Cpgm(p) = Ct ∪ Cd ∪ Cf ∪ C0

2

Theorem 5.2 Let p be a program. The constraint system Cpgm(p) has a minimal solution
S0. Then AnnS0(p) is a well-annotated program.

Proof Follows from Lemmas 5.4, 5.3 and 5.7. 2

We state without proof that a minimal solution gives a “best” annotation, i.e. when
an initial division is fixed, it is not possible to construct “more” static well-annotation.

180

www.manaraa.com

5.4.4 Normal form

This section presents a set of solution preserving rewrite rules that simplify the structure
of constraint systems. This allows a solution to be found easily

Let C be a constraint system. By C ⇒S C ′ we denote the application of a rewrite rule
that yields system C ′ under substitution S. The notation C ⇒ ∗SC ′ denotes exhaustive
application of rewrite rules until the system stabilizes. We justify below that definition is
meaningful, i.e. that a system eventually will converge.

A rewrite rule is solution preserving if C ⇒S′ C ′ and S ∈ Sol(C) ⇔ S ◦ S ′ ∈ Sol(C ′).
That is, a solution to the transformed system C ′ composed with the substitution S ′ is
solution to the original system. Suppose that a constraint system is rewritten exhaustively
C ⇒∗S′C ′, and S0 is a minimal solution to C ′. We desire S0 ◦ S ′ to be a minimal solution
to C.

Figure 57 defines a set of rewrite rules for binding time constraints, where T range
over bt-types and B range over binding times. The function unify : BType × BType →
BTVar → BTime denotes the must general unifier over binding time types (actually,
binding times). Notice that Unify never can fail (in this case), and that no rule discards
a variables (e.g. due to a rule C ∪ {S > β} ⇒ C).

Lemma 5.8 The rewrite rules displayed in Figure 57 are solution preserving.

Proof By case analysis.
Case 1.a: Follows from the definition of Unify.
Case 2.d: Follows from the definition of ¹.
Case 2.g: Left to right: Suppose S0 is a solution to

〈
τb
β

〉
¹

〈
τb
β′

〉
. If S0(β) = D, then

S0(β
′) = D, by definition of ¹. By definition, S0 is also a solution to β > β′. Suppose

S0(β) = S. Then S0(β
′) either S or D, but then S0 is also a solution to the right hand

side. Right to left: Similar.
Cast 3.c: A solution to the left hand side maps β to S or D, and solves the constraint
on the right hand side. 2

Lemma 5.9 The rewrite rules in Figure 57 are normalizing.

Proof All rules but 1.g, 1.h, 1.i, 2.f, 2.g, 2.h, 2.i, 2.j, 2.k, 3.c, 3.f and 3.g remove a
constraint. The constraints introduced by rule 1.g are never rewritten. The constraint
introduced by rules 2.h, 2.i, and 2.j are removed by rules 1. The constraint added by rule
2.f is not subject for other rules. The constraints introduced by rules 3.c, 3.f and 3.g are
either left in the system or removed by rules 2.a and 2.b. The constraint introduced by
rule 2.g is either removed (directly or indirectly) or left in the system. Consider rules
1.h, 1.i and 2.k. The number of times these rules can be applied is limited by the size of
bt-types. Notice that a constraint introduced by a rule cannot be subject for the same
rule again. 2

181

www.manaraa.com

The lemma proves that exhaustive application of the rewrite rules in Figure 57 is
well-defined. Let C be a constraint system, and suppose C ⇒∗SC ′. The system C ′ is in
normal form; a normal form is not unique. The theorem below characterizes normal form
constraint systems.

Theorem 5.3 Let C be a constraint system.

1. The system C has a normal form, and it can be found by exhaustive application
C ⇒∗S′C ′ of the rewrite rules in Figure 57.

2. A normal form constraint system consists of constraints of the form:

〈
τb
S

〉
¹

〈
τb
β

〉
, β > β′

and no other constraints.

3. If S ′0 is a minimal solution to C ′, then S = S ′0 ◦ S ′ is a minimal solution to C.

Proof Case 1: Follows from Lemma 5.9.
Case 2: By inspection of the rules in Figure 57.
Case 3: Suppose that S ′0 is a minimal solution to C ′. Observe that for a solution S to
C, if S ′(β) = D then S(β) = D, since otherwise a constraint would not be satisfied. This
implies that S ′0 ◦ S ′ is a minimal solution to C. 2

The theorem states that a minimal solution to a constraint system can be found as
follows: first normalize the constraint system, and then find a minimal solution to the
normalized constraint system. The composition of the substitutions is a minimal solution.

5.4.5 Solving constraints

Finding a minimal solution to a normal form constraint system is notably simple: solve
all lift constraints by equality, and map remaining free variables to S.

Lemma 5.10 Let C ′ be a normal form constraint system. The substitution S = [β 7→ S]
for all β ∈ FreeVar(C ′) is a minimal solution to C ′.

Proof To see that S is a solution, suppose the opposite. Then there exists a constraint
that is not satisfied by S. Due to the characterization of normal form, this constraint
must be of the form

〈
τ
S

〉
¹

〈
τ
β

〉
or β > β′. However, these are solved when all variables

are mapped to S.
Clearly, S is the minimal solution. 2

Given this, the following theorem states a constructive procedure for binding-time
analysis.

182

www.manaraa.com

Equal
1.a C ∪ {〈 τ

S

〉
=

〈
τ
S

〉} ⇒ C
1.b C ∪ {〈 τ

D

〉
=

〈
τ
D

〉} ⇒ C
1.c C ∪ {

〈
τ
β

〉
=

〈
τ
S

〉} ⇒ SC S = [β 7→ S]

1.d C ∪ {
〈

τ
β

〉
=

〈
τ
D

〉} ⇒ SC S = [β 7→ D]

1.e C ∪ {〈 τ
S

〉
=

〈
τ
β

〉
} ⇒ SC S = [β 7→ S]

1.f C ∪ {〈 τ
D

〉
=

〈
τ
β

〉
} ⇒ SC S = [β 7→ D]

1.g C ∪ {
〈

τ
β

〉
=

〈
τ
β′

〉
} ⇒ SC ∪ {

〈
int

S

〉
¹

〈
int

β

〉
} S = [β′ 7→ β]

1.h C ∪ {〈 τ
B

〉
BT =

〈
τ
B′

〉
BT ′} ⇒ C ∪ {〈 τ

B

〉
=

〈
τ
B′

〉
, BT = BT ′}

1.i C ∪ {
〈

(BTi)
B

〉
BT =

〈
(BT ′i)

B′

〉
} ⇒ C ∪ {BTi = BT ′i ,

〈
int

B

〉
=

〈
int
B′

〉
, BT = BT ′}

Lift
2.a C ∪ {

〈
τb
S

〉
¹

〈
τb
S

〉
} ⇒ C

2.b C ∪ {
〈

τb
S

〉
¹

〈
τb
D

〉
} ⇒ C

2.c C ∪ {
〈

τb
D

〉
¹

〈
τb
D

〉
} ⇒ C

2.d C ∪ {
〈

τb
D

〉
¹

〈
τb
β

〉
} ⇒ SC S = [β 7→ D]

2.e C ∪ {
〈

τb
β

〉
¹

〈
τb
S

〉
} ⇒ SC S = [β 7→ S]

2.f C ∪ {
〈

τb
β

〉
¹

〈
τb
D

〉
} ⇒ C ∪ {

〈
τb
S

〉
¹

〈
τb
β

〉
}

2.g C ∪ {
〈

τb
β

〉
¹

〈
τb
β′

〉
} ⇒ C ∪ {β > β′}

2.h C ∪ {〈 τs
B

〉 ¹ 〈
τs
B′

〉} ⇒ C ∪ {〈 τs
B

〉
=

〈
τs
B′

〉}
2.i C ∪ {〈 ∗B

〉
BT ¹ 〈 ∗

B′
〉
BT ′} ⇒ C ∪ {〈 ∗B

〉
BT =

〈 ∗
B′

〉
BT ′}

2.j C ∪ {
〈

[n]
B

〉
BT ¹

〈
[n]
B′

〉
BT ′} ⇒ C ∪ {

〈
[n]
B

〉
BT =

〈
[n]
B′

〉
BT ′}

2.k C ∪ {
〈

(BTi)
B

〉
BT ¹

〈
(BT ′i)

B′

〉
BT ′} ⇒ C ∪ {BT ′i = BTi, BT = BT ′, B > B′}

Dependency
3.a C ∪ {S > S} ⇒ C
3.b C ∪ {S > D} ⇒ C
3.c C ∪ {S > β} ⇒ C ∪ {

〈
int

S

〉
¹

〈
int

β

〉
}

3.d C ∪ {D > D} ⇒ C
3.e C ∪ {D > β′} ⇒ SC S = [β′ 7→ D]
3.f C ∪ {β > S} ⇒ C ∪ {

〈
int

S

〉
¹

〈
int

β

〉
}

3.g C ∪ {β > D} ⇒ C ∪ {
〈
int

S

〉
¹

〈
int

β

〉
}

Figure 57: Normalizing rewrite rules

183

www.manaraa.com

Theorem 5.4 Let C be a constraint system. The minimal solution S0 to C is given by
S0 = S ′0 ◦ S ′, where C ′ is a normal form of C: C ⇒∗S′C ′, and S ′0 maps all free variables
in C ′ to S.

Proof The substitution S ′0 is a minimal solution to C ′ according to Lemma 5.10. Due
to Theorem 5.3, item 3, S is a minimal solution to C. 2

5.4.6 Doing binding-time analysis

The steps in the binding-time analysis can be recapitulated as follows. Let p be a program.

1. Construct the constraint system Cpgm as defined by Definition 5.13.

2. Normalize the constraint system to obtain a normal form C ′ by exhaustive applica-
tion of the rewrite rules in Figure 57, under substitution S ′.

3. Let S ′0 be the substitution that maps all variables in C ′ to S.

Then S = S ′0 ◦ S ′ is a minimal solution. Apply the annotation function AnnS(p) to get a
well-annotated program.

Step 1 can be done during a single traversal of the program’s syntax tree. By inter-
preting un-instantiate binding time variables as S, step 3 can be side-stepped. Thus, to
get an efficient binding-time analysis, construction of an efficient normalization algorithm
remain.

5.4.7 From division to well-annotated program

The analysis developed here assigns to each expression its bt-type. This implies that for
instance the generating extension transformation (Chapter 3) can transform an expression
looking solely at the expression’s type, since the well-annotatedness of an expression is
determined solely by the binding times of its subexpressions. This is, however, in general
excessively much information. At the price of more computation during the transforma-
tion, a division is sufficient.

A division is a map from identifiers to bt-types.16 By propagating information from
subexpressions to expressions, the binding time of all constructs can be found.

This implies that once a bijection between identifiers and their associated bt-types has
been established, the constraint set can be kept and solved completely separately from the
program. The solution assigns binding times to identifiers, from which the binding times
of all expressions can be determined. This fact is exploited in Chapter 7 that considers
separate binding-time analysis.

16We assume included in the set of identifiers the labels of ‘alloc()’ calls.

184

www.manaraa.com

5.4.8 Extensions

Recall from Chapter 3 that conditional side-effects under dynamic control must be an-
notated dynamic. The rule in Figure 54 suspends all conditional side-effects (which is
correct but conservative). If the test is static, there is no need to suspend the side-effect
(in a non-sharable function). This can be incorporated by adding a dependency constraint
from the test to the assignment: {Btest > Bassign}.

The rule for unions does not implement the sharing of initial members of struct mem-
bers of a union. To correct this, constraints unifying the binding times of the relevant
members must be added, such that all initial members possess the same binding time.
We will not dwell with a formal definition.

Recall from Chapter 3 that unfold-able functions may be assigned more static binding
times than sharable functions. For example, partially-static parameters of pointer type
can be allowed, since propagation of non-local variables is not risked. The extension is
almost trivial, but tedious to describe.17

Finally, consider the rule for the address operator in Figure 46. To implement spe-
cialization to function pointers, it must be changed slightly. Recall that an application
‘&f’, where ‘f’ is a function designator, should be classified static. This case can easily be
detected by the means of the static types.

5.5 Efficient constraint normalization algorithm

This section presents an efficient algorithm for constraint normalization, the core part of
the binding-time analysis. The algorithm is based on a similar algorithm originally by
Henglein [Henglein 1991], but is simpler due to the factorization into a value-flow analysis
(for structs) and the binding-time analysis, and the exploitation of static types.

5.5.1 Representation

The normalization rules in Figure 57 rewrite several constraints into “trivial” lift con-
straints of the form:

〈
int
S

〉
¹

〈
int
β

〉
. The objective being that otherwise a variable could

be discarded from the constraint system, and hence not included in the domain of a solu-
tion. This is solely a technical problem; in practice bt-types are attached to expressions
and do not “disappear”. Since, by Theorem 5.4, un-instantiated binding time variables
are to going to be mapped to S after the normalization anyway, it is safe to skip trivially
satisfied constraints.

To every binding time variable β we assign a list of dependent binding times. If β is
a binding time variable, βdep is the list of binding time variables β′ such that β > β′.

For unification of binding times, we employ a variant of union/find [Tarjan 1983]. In
the algorithms only union on binding time terms are performed, although we for notational
simplicity assume that ‘find()’ also works on bt-types (returning the ECR of the binding
time of the first type specifier).

17We have not implemented this in C-Mix.

185

www.manaraa.com

/* Efficient constraint normalization algorithm */
for (c in clist)

switch (c) {
case BT1 = BT2: /* Equality constraint */

union_type(BT1,BT2);
case BT1 <= BT2: /* Lift constraint */

switch (find(BT1), find(BT2)) {
case (<base,S>,<base,S>): case (<base,D>,<base,D>):
case (<base,S>,<base,b>): case (<base,b>,<base,D>): /* L1 */

break;
case (<base,S>,<base,D>): break; /* L2 */
case (<base,b>,<base,S>): union(b,S); break; /* L3 */
case (<base,D>,<base,b>): union(b,D); break; /* L4 */
case (<base,b1>,<base,b2>): /* L5 */

b2.dep = add_dep(b1,b2.dep); break;
case (<struct,B1>,<struct,B2>): /* L6 */

union(B1,B2); break;
default: /* ptr, array and fun type: unify */

union_type(BT1,BT2); break;
}

case B1 |> B2: /* Dependency constraint */
switch (find(B1), find(B2)) {

case (S,S): case (S,D): case (D,D): /* D1 */
case (S,b): case (b,S): case (b,D): break;
case (D,b): union(b,D); break; /* D2 */
case (b1,b2): b2.dep = add_dep(b1,b2.dep); break; /* D3 */

}
}

/* equal: union BT1 and BT2 */
void union_type(BType BT1, BType BT2)
{

for ((bt1,bt2) in (BT1,BT2))
switch (find(bt1),find(bt2)) {

case (<(BT_i’),B1>,<(BT_i’’),B2>):
for ((BT1,BT2) in (BT_i’,BT_i’’))

union_type(BT1,BT2);
union(find(B1),find(B2));
break;

default:
union(find(bt1), find(bt2)); break;

}
}

Figure 58: Efficient constraint normalization algorithm

186

www.manaraa.com

/* union: unify simple (ECR) terms b1 and b2 */
void union(BTime b1, BTime b2)
{

switch (b1,b2) {
case (S,S): case (D,D): break;
case (b,S): case (S,b): b = link(S); break;
case (b,D): case (D,b):

dep = b.dep; b = link(D);
for (b’ in dep) union(find(b’),D);
break;

case (b1,b2):
b1.dep = add_dep(b1.dep,b2.dep);
b2 = link(b1);
break;

}
}

Figure 59: Union algorithm adopted to normalization algorithm (without rank)

5.5.2 Normalization algorithm

The normalization algorithm is depicted in Figure 58. The input is a list ‘clist’ of
constraints. The algorithm side-effects the type representation such that all binding time
variables in a minimal solution that would map to dynamic are instantiated to D.

In the case of an equality constraint, the type specifiers are union-ed. Notice that no
“type-error” can occur: the underlying static program types match.

The trivial lift constraints are skipped. In the case
〈

τb
β

〉
¹

〈
τb
S

〉
and

〈
τb
D

〉
¹

〈
τb
β

〉

where β is forced to be either S or D, respectively, the binding time variables are union-
ed. In the case of a constraint

〈
τb
β1

〉
¹

〈
τb
β2

〉
, the dependency from β1 to β2 is recorded

in the dependency list of β1. If the type is not a base type, the binding times of the
two binding time types shall be equal, which is accomplished via the case for equality
constraint.

The dependency list of a binding time variable is checked by the union function be-
fore the variable is made dynamic, as shown in Figure 59. For simplicity we ignore the
maintenance of ranks.

5.5.3 Complexity

Consider the algorithm in Figure 58. Clearly, the algorithm possesses a run-time that is
linear in the number of constraints. Observe that no constraints are added to the con-
straint list during the processing. The ‘union type()’ does not, however, take constant
time. In the case of function types, the arguments must be processed.

The amortized run-time of the analysis is almost-linear in the size of the constraint
system, which is linear in the size of the program. To this, the complexity of the value-flow
analysis (for structs) must be added.

In practice, the number of constraints generated for every node is close to 1 on the
average, see the benchmarks provided in Section 5.7. Notice, however, that the imple-

187

www.manaraa.com

mentation is optimized beyond the present description.

5.5.4 Correctness

The correctness of the algorithm amounts to showing that it implements the rewrite rules
in Figure 57. We provide an informal argument.

The rules for equality constraints are captured by the ‘union type()’ function. We
omit a proof of its correctness.

Consider the rules for lift. Rules 2.d and 2.e are covered by L3 and L4, respectively.
Rule 2.g is implemented by L5, and rule 2.b by L2. Rules 2.a, 2.c and 2.f are captured
by L1 (trivial constraints). Case L6 corresponds to rule 2.h. The rules 2.i, 2.j and 2.k are
implemented by the default case.

Finally, the rules for dependency constraints. Rules 3.a, 3.b, 3.c, 3.d, 3,f and 3.g
are trivial and are implemented by case D1. Rule 3.e is implemented by D2, and case
D3 converts the constraint β > β′ into the internal representation (corresponding to the
rewrite rules that leave a constraints in the system).

Since the ‘union()’ algorithm makes dynamic all dependent variables when a variable
becomes dynamic, the normalization algorithm correspond to exhaustive application of
the rewrite rules.

5.5.5 Further improvements

Even though the binding-time analysis is efficient there is room for improvements. The
normalization algorithm is linear in the number of constraints. The easiest way to lower
the run-time of the binding-time analysis is to reduce the number of constraints!

Consider the constraints generated for binary operator applications. Lift constraints
are added to capture that an operand possibly may be lifted. However, in the case of
values of struct or pointer types, no lifting can take place. Thus, equality constraints can
be generated instead.

The key point is that by inspection of the static program types, several lift constraints
can be replaced by equality constraints, which are faster to process.

Next, the analysis’ storage usage is linear in the number of constraints. It can be
reduced by pre-normalization during the generation. For example, all equality constraints
can be processed immediately. This reduces the number of constraints to about the half.
Practical experiments show that this is a substantial improvement, even though it does
not improve the overall algorithm’s complexity.

5.6 Polyvariant binding-time analysis

The analysis developed so far is monovariant on function arguments. A parameter is
assigned one binding time only, approximating all calls in the program to the function. A
polyvariant binding-time analysis is context-sensitive; different calls to a function are not
(always) collapsed. In this section we outline a polyvariant analysis based on the same
principles as employed in Chapter 4.

188

www.manaraa.com

5.6.1 Polyvariant constraint-based analysis

We describe a polyvariant analysis based on program’s static-call graph. Recall that
the static-call graph approximates context-sensitive invocations of functions. A function
called in n different contexts is said to have n variants. The static-call graph maps a call
and a variant to a variant of the called function, see Chapter 2.

To each type specifier appearing in a function with n variants we assign a vector of n+1
binding time variables. The variables 1,. . . ,n describe the binding times of the variants,
and variable 0 is a summary (corresponding to monovariant analysis). The summary is
also used for indirect calls.18

Example 5.18 Consider the program in Example 5.1. The initial binding time assign-
ment to ‘pow’ is

〈(〈
int

〈β0n ,β1n ,β2n〉
〉

,
〈

int
〈β0x ,β1x ,β2x〉

〉)

〈β0, β1, β2〉

〉 〈
int〈

β0
pow, β1

pow, β2
pow

〉
〉

where the length of the vectors are 3 since ‘pow’ appears in two contexts. End of Example

The constraint generation proceeds as in the intra-procedural case except for calls and
return statements.19

Consider a call gl(e1, . . . , en) in a function with n variants. Suppose SCG(l, i) = 〈g, ki〉.
The constraints generated are

⋃

i=1,...,n

{T i
j ¹ T ki

gj
, T ki

g ¹ T i}

where T ki

gj
denotes the bt-type of the j’th parameter in the i’th variant, and T ki

g the return
type.

Example 5.19 For the ‘pow()’ function we have: T 1
n =

〈
int
β1

n

〉
. End of Example

For return statements, the following constraints are generated:
⋃

i=1,...,n

{T i ¹ T ki

g }

relating the binding time of the i’th variant with the function’s bt-type.
Finally, constraints

⋃

i=1,...,n

{T i
t # > T 0

t #}

for all type specifiers t are added. These constraints causes variant 0 to be a summary
variant.

It is straightforward to extend the normalization algorithm in Figure 58 to inter-
procedural analysis. The vectors of binding time variables are processed component-wise.

18Recall that the static-call graph does not approximate indirect calls.
19The constraint generating for assignments must also be changed to accommodate inter-procedural

side-effects under dynamic control.

189

www.manaraa.com

Example 5.20 The result of inter-procedural analysis of the program in Example 5.1 is
as follows.

〈
(
〈

int
〈D,S,D〉

〉
,
〈

int
〈D,D,S〉

〉
)

〈D, S, D〉

〉 〈
int

〈D, D, D〉

〉

where the result value is dynamic in both cases. End of Example

We refer to Chapter 4.6 for a detailed description of the technique.

5.6.2 Polyvariance and generation extensions

The polyvariant binding time information can be exploited by the generating extension
transformation developed in Chapter 3 as follows.

For every function, a generating function is generated for each variant and the 0
variant. If one or more contexts have the same binding times signature, they can be
collapsed. Copying of functions is also known as procedure cloning [Cooper et al. 1993].
At the time of writing we have not implemented function cloning on the basis of binding
times into the C-Mix system.

5.7 Examples

We have implemented the binding-time analysis in the C-Mix system. The analysis is
similar to the one describe in this chapter, but optimized. Foremost, constraints are
pre-normalized during generation. For example, most equality constraints are unified
immediately.

We have timed the analysis on some test programs. The experiments were carried out
on a Sun SparcStation II with 64 Mbytes of memory. The results are shown in the table
below. See Chapter 9 for a description of the test programs.

Program Lines Constraints Normalization Analysis

Gnu strstr 64 148 ≈ 0.0 sec 0.03 sec
Ludcmp 67 749 0.02 sec 0.04 sec
Ray tracer 1020 8,241 0.4 sec 0.7 sec
ERSEM ≈ 5000 112,182 5.5 sec 8.7 sec

As can be seen the analysis is very fast. Notably is the seemingly non-linear rela-
tionship between the number of constraints for the Ray tracer and the ERSEM modeling
system. The reason is that ERSEM contains many array indexing operators giving rise
to lift constraints, whereas more constraints can be pre-normalized in the case of the ray
tracer.

190

www.manaraa.com

5.8 Related work

Binding-time analysis was originally introduced into partial evaluation as a means for ob-
taining efficient self-application of specializers. The use of off-line approximation of bind-
ing times as opposed to online determination includes several other advantages, however.
It yields faster specializers, enables better control over the desired degree of specialization,
and can provide useful feedback about prospective speedups, binding-time improvements
and, more broadly, the binding time separation in a program. Furthermore, it can guide
program transformations such as the generation extension transformation.

5.8.1 BTA by abstract interpretation

The binding-time analysis in the first Mix was based on abstract interpretation over
the domain S < D [Jones et al. 1989]. It coarsely classified data structures as either
completely static or completely dynamic, invoking the need for manual binding time
improvements. By the means of a closure analysis, Bondorf extended the principles to
higher-order Scheme [Bondorf 1990].

To render manual binding time improvement superfluous, Mogensen developed a
binding-time analysis for partially static data structures [Mogensen 1989]. The analysis
describes the binding time of data structures by the means of a tree grammar. Launch-
bury has developed a projection-based analysis that in a natural way captures partially
static data structures [Launchbury 1990].

All the mentioned analyses are monovariant and for applicative languages.
Ruggieri et al. have developed a lifetime analysis for heap-allocated objects, to replace

dynamically allocated objects by variables [Ruggieri and Murtagh 1988]. The analysis
classify objects as compile time or run time, and is thus similar to binding-time analysis.
It is based on classical data-flow analysis methods.

5.8.2 BTA by type inference and constraint-solving

The concept of two-level languages was invented by the Nielsons who also developed a
binding-time analysis for a variant of the lambda calculus [Nielson and Nielson 1988].
The analysis was partly based on abstract interpretation and partly on type inference via
Algorithm W. Gomard designed a binding-time analysis for an untyped lambda calculus
using a backtracking version of Algorithm W [Gomard 1990]. The analysis is conjectured
to run in cubic time.

Henglein reformulated the problem and gave a constraint-based characterization of
binding time inference [Henglein 1991]. Further, he developed an efficient constraint nor-
malization algorithm running in almost-linear time.

In our Master’s Thesis, we outlined a constraint-based binding-time analysis for a
subset of C [Andersen 1991], which later was considerably simplified and implemented
[Andersen 1993a]. This chapter provides a new formulation exploiting the static types,
and adds polyvariance.

191

www.manaraa.com

Bondorf and Jørgensen have re-implemented the analyses in the Similix Scheme par-
tial evaluator to constraint-based analyses [Bondorf and Jørgensen 1993], and Birkedal
and Welinder have developed a binding-time analysis for the Core part of Standard ML
[Birkedal and Welinder 1993].

Heintze develops the framework of set-based analysis in his thesis [Heintze 1992].
Binding-time analysis can be seen as a instance of general set-based analysis. It is sug-
gested that polyvariant analysis can be obtained by copying of functions’ constraint sets.

5.8.3 Polyvariant BTA

Even though polyvariant binding-time analysis is widely acknowledged as a substantial
improvement of a partial evaluator’s strength only little work has been done (successfully).

Rytz and Gengler have extended the (original) binding-time analysis in Similix to a
polyvariant version by iteration of the original analysis [Rytz and Gengler 1992]. Expres-
sions that may get assigned two (incomparable) binding times are duplicated, and the
analysis started from scratch. Naturally, this is very expensive in terms of run-time.

Consel has constructed a polyvariant analysis for the Schism partial evaluation, that
treats a higher-order subset of Scheme [Consel 1993a]. The analysis is based on abstract
interpretation and uses a novel concept of filters to control the degree of polyvariance.

A different approach has been taken by Consel and Jouvelot by combining type and
effect inference to obtain a polyvariant binding-time analysis [Consel and Jouvelot 1993].
Currently, the analysis can only handle non-recursive programs, and no efficient algorithm
has been developed.

Henglein and Mossin have developed a polyvariant analysis based on polymorphic type
inference [Henglein and Mossin 1994]. The idea is to parameterize types over binding
times. For example, a lambda expression λx : τ.e may be assigned the “type scheme”
Λβ.τ1 →S τ2, where β denotes the binding time of x (and appears in the type τ2), and
the S on the function arrow symbol denotes ‘static closure’.

5.9 Further work

This section list a number of topics for further study.

5.9.1 Constraint solving, tracing and error messages

We have seen that a clean separation of constraint generation and solving is advantageous:
the program needs only be traversed once and, as shown in Chapter 7, this supports sep-
arate analysis. The separation renders useful feedback from the constraint-solver hard,
however. The problem is that once the constraint system has been extracted, the con-
nection to the program is lost. In the case of binding-time analysis, the solver will never
fail, as e.g. a constraint-based type checker might do, but traces of value flow would be
useful. Obvious questions are “what forced this variable to be dynamic”, and “why do
‘x’ and ‘y’ always have the same binding time”?

192

www.manaraa.com

An obvious idea is to “tag” type variables with their origin, but this only gives a
partial solution. Suppose for example a number of type variables are union-ed, and then
the ECR is made dynamic. This makes all variables dynamic, and this can be showed by
the analysis, but it says nothing about causes and effects.

5.9.2 The granularity of binding times

The analysis described in this chapter is flow-insensitive and a summary analysis. A
variable is assigned one binding time throughout a function body.

The generating-extension principle seems intimately related to uniform binding time
assignments. A variable cannot not “change”. A poor man’s approach to flow-sensitive
binding time assignment would be by renaming of variables. Clearly, this can be auto-
mated. We have not investigated this further, but we suspect some gains are possible.

5.9.3 Struct variants

We have described a polyvariant analysis that allows context-sensitive analysis of func-
tions. The parameters of a function are ascribed different binding times according to the
call-site. Notice, however, that this is not the case for structs : a struct member only exist
in one variant.

Extension of the analysis to accommodate variants of struct definitions is likely to
improve binding time separation.

5.9.4 Analysis of heap allocated objects

The binding time assignment to heap-allocated objects are based on object’s birth-place.
All objects allocated from the same call-site is given the same binding time. A more fine-
grained analysis seems desirable. Notice that the inter-procedural binding-time analysis
improves upon the binding time separation of objects, since heap allocation in different
variants can be given different binding times.

5.10 Conclusion

We have developed a constraint-based polyvariant binding-time analysis for the Ansi C
programming language.

We specified well-annotatedness via non-standard type systems, and justified the def-
inition with respect to the generating-extension transformation.

Next we gave a constraint-based formulation, and developed an efficient constraint-
based analysis. An extension to polyvariant analysis based on static-call graphs was also
described.

We have implemented the analysis in the C-Mix system, and provided some experi-
mental results. As evident from the figures, the analysis is very fast in practice.

193

www.manaraa.com

Chapter 6

Data-Flow Analysis

We develop a side-effect analysis and an in-use analysis for the C programming language.
The aim of the side-effect analysis is to determine side-effecting functions and assignments.
The in-use analysis approximates the set of variables (objects) truly used by a function.

The purpose of data-flow analysis is to gather static information about program with-
out actually running them on the computer. Classical data-flow analyses include common
subexpression elimination, constant propagation, live-variable analysis and definition/use
analysis. The inferred information can be employed by an optimizing compiler to improve
the performance of target programs, but is also valuable for program transformations such
as the generating-extension transformations. The result of an analysis may even be used
by other analyses. This is the case in this chapter, where explicit point-to information is
employed to track pointers.

Compile-time analysis of C is complicated by the presence of pointers and functions.
To overcome the problem with pointers we factorize the analysis into a separate pointer
analysis and data flow analysis. Several applications of the pointer analysis developed in
Chapter 4 can be found in this chapter.

The side-effect analysis approximates the set of unconditional and conditional side-
effects in a function. A side-effect is called conditional if its execution is controlled by
a test, e.g. an if statement. We show how control-dependence calculation can be used
to determine conditional side-effects, and formulate the analysis as a monotone data flow
framework. An iterative algorithm is presented.

The in-use analysis is similar to live-variable analysis, but deviates in a number of
ways. It yields a more fine-grained classification of objects, and it is centered around
functions rather than program points. For example, the in-use analysis may give as result
that for a parameter of a pointer type, only the address is used, not the indirection. The
analysis is specified in classical data flow framework.

Both analyses are employed in the generating-extension transformation to suspend
conditional side-effects, and avoid specialization with respect to non-used data, respec-
tively.

This chapter mainly uses techniques from classical data-flow analysis. We present,
however, the analyses in a systematic and semantically founded way, and observe some
intriguing similarities with constraint-based program analysis.

194

www.manaraa.com

6.1 Introduction

Data-flow analysis aims at gathering information about programs at compile-time. In this
chapter we consider two classical program analyses, live-variable analysis and side-effect
analysis. These have been studied extensively in the Fortran community, but to a lesser
extent for the C programming language. The main reason being the pointer concept
supported by C. The solution we employ is to factorize the analyses into two parts: an
explicit pointer analysis and a data flow analysis. Thus, this chapter also serves to give
applications of the pointer analysis developed in Chapter 4, and illustrate its usefulness.

The analyses developed in this chapter have an application in partial evaluation. The
side-effect analysis is employed to track down conditional side-effects which must be sus-
pended (by the binding-time analysis), and the in-use analysis is used to prevent special-
ization with respect to unused data.

6.1.1 Data-flow analysis framework

Recall that a function is represented as a single-exit control-flow graph G = 〈S,E, s, e〉
where S is a set of statement nodes, E a set of control-flow edges, and s and e are unique
start and exit nodes, respectively. A program is represented via an inter-procedural
control-flow graph G∗.

A monotone data-flow analysis framework (MDFA) is a tuple D = 〈G,L, F, M〉 of
an (inter-procedural) control-flow graph G, a semi-lattice L (with a meet operator), a
monotone function space F ⊆ {f : L → L}, and a propagation-function assignment M
[Marlowe and Ryder 1990b]. The assignment M associates to all statements (basic blocks)
a propagation function f ∈ F .1 The framework is called distributive if the function space
F is distributive.

Example 6.1 In constant propagation analysis the lattice is specified by ‘{⊥ < n < >}’,
n ∈ IN , and F consists of functions abstracting the usual operators on L. For example,
‘⊥+ 2 = 2’ and 4 +> = >. Constant propagation is a monotone data flow problem, but
it is not distributive. End of Example

An optimal solution at a program point2 n to a data flow problem is defined as

MOP(n) =
∧

π∈path(n)

fπ(1L),

where path(p) denotes the paths from s to n. This is called the meet over all paths solution.
Implicit in the meet over all paths is the so-called “data-flow analysis assumption”: all
paths are executable.

A maximal fixed-point solution to an MDFA framework is a maximal fixed-point to
the equations

MFP(s) = 1, MFP(n) =
∧

n′∈pred(n)

fn′(MFP(n′),

1We give a syntax-based approach and will omit M .
2We often identify a program point with a statement node.

195

www.manaraa.com

where pred(n) is the set of predecessor nodes of n.
A fixed-point can be computed via standard iterative algorithms. It holds that MFP ≤

MOP if F is monotone, and MFP = MOP if F is distributive [Kam and Ullman 1977].
Thus, in the case of distributive problems, the maximal fixed-point solution coincides
with the optimal solution. On the other hand, there exists instances of MDFA such that
MFP < MOP [Kam and Ullman 1977].

6.1.2 Solutions methods

A solution to a MDFA can be found via iterative [Kildall 1973,Kam and Ullman 1976]
or elimination [Allen and Cocke 1976,Graham and Wegman 1976,Ryder and Paull 1986]
algorithms. Iterative algorithms propagate values through the data flow functions F to
obtain a solution; elimination algorithms reduce the control-flow graphs and compose
propagation functions accordingly, and then apply the composed function to the problem.

Theoretically, most elimination algorithms exhibit lower worst-case complexity than
iterative algorithms, but on many problems they are equally fast [Kennedy 1976]. Further,
elimination algorithms are not guaranteed to work on irreducible flow graphs for all kind
of problems. In this chapter we shall only consider iterative methods.

A MDFA satisfying ∀v ∈ L : f(v) ≥ v ∧ f(1) is called rapid [Kam and Ullman 1976].
It can be shown that at most d(G) + 3 iterations is needed by an iterative algorithm to
compute the MFP solution, where d is the loop connectedness of G (which essentially
corresponds to the number of nested loops). Essentially, rapidness means that the contri-
bution of a loop is independent of the (abstract) values at the loop entry. Since the loop
nesting in most programs are modest, rapid data-flow problems are tractable and efficient
in practice.

Example 6.2 Constant propagation is fast. Fastness means that one pass of a loops is
sufficient determine its contribution [Marlowe and Ryder 1990b]. End of Example

6.1.3 Inter-procedural program analysis

Local analysis is concerned with analysis of basic blocks. Global analysis considers the
data flow between basic blocks. Intra-procedural analysis focuses on analysis of a function
body and makes worst-case assumption about function calls. Inter-procedural analysis is
centered around the propagation of data through functions. The aim of inter-procedural
analysis is to differentiate the contexts a function is called from, to avoid spurious infor-
mation to be propagated.

Example 6.3 Consider constant folding analysis in the following program.

int main(void) int foo(int n)
{ {

int x, y; return n + 1;
x = foo(2); }
y = foo(3);

}

196

www.manaraa.com

Inter-procedural analysis will merge the two calls and approximate the result of ‘foo()’
by >, since ‘n’ gets bound to both 2 and 3. Inter-procedural analysis avoid interference
between the two calls, and maps ‘x’ to 3 and ‘y’ to 4. End of Example

In Chapter 4 and Chapter 5 we have conducted inter-procedural context-sensitive
analysis on the basis of a program’s static-call graph. For example, for each context a
function may be called from, separate point-to information is available.

6.1.4 Procedure cloning

Inter-procedural analysis is mainly concerned with the propagation of information through
functions. Consider now the use of data-flow information in a function body.

Traditionally, optimizations based on inter-procedural analyses use a summary of all
calls. Thus, all contexts the function appears in are merged. For example, constant folding
in the program above (Example 6.3) will not give to any optimization: the summary of
‘n’ is >, since ‘n’ is bound to both 2 and 3.

Suppose that ‘foo()’ is copied, and the call-sites are changed accordingly. This en-
ables constant folding: the expressions ‘n+1’ can be replaced by 3 and 4, respectively.
Explicit copying before program analysis is undesirable since it may increase program size
exponentially.

Copying of functions on the basis of context-sensitive analyses is known as proce-
dure cloning [Cooper et al. 1993,Hall 1991]. In the example above, a reasonable cloning
strategy would create two versions of ‘foo()’, but avoid copying if the second call was
‘foo(2)’.

Example 6.4 Procedure cloning of the program in Example 6.3

int main(void) int foo1(int n) int foo2(int n)
{ { {

int x, y; /* n = 2 */ /* n = 3 */
x = foo1(2); return n + 1; return n + 1;
y = foo2(3); } }

}

Constant folding may replace the expressions ‘n + 1’ by constants. End of Example

Explicit procedure cloning seems a natural pre-transformation for the generating-
extension transformation described in Chapter 3. We will therefore continue to assume
that functions are copied according to a program’s static-call graph before generating-
extension transformation. Hence, a function exists in a number of variants, correspond-
ing to the number of call contexts. Recall that the static-call graph maps a call and a
variant number to a (called) function and a variant. The context dependent analyses of
this chapter rely on context sensitive point-to information.

197

www.manaraa.com

L[[c]] i = {}
L[[v]] i = {v}
L[[e1.i]] i = {S.i | o ∈ L(e1) i, TypOf(o) = 〈struct S〉}
L[[*e1]] i =

⋃
o S̃(o, i) o ∈ L(e1) i

L[[e1[e2]]] i =
⋃

o S̃(o, i) o ∈ L(e1) i
L[[otherwise]] i = {}

Figure 60: Computation of an expression’s lvalues

6.1.5 Taming pointers

Consider live-variable analysis of an expression ‘*p = *q’. The assignment kills all vari-
ables the pointer ‘p’ may point to, and uses all variables ∗q may be aliased to. Without
pointer information, worst-case assumptions must be made, i.e. both pointers can point
to all objects. This degrades the accuracy of the analysis.

We will use the pointer analysis in Chapter 4 to approximate the usage of pointers.
Recall that for every pointer the analysis computes a set of abstract locations the pointer
may point to during program execution.3 We shall assume the result of the analysis is
available in the form of the map S̃ : ALoc×Variant → ℘(ALoc), where the set of abstract
locations ALoc was defined in Chapter 4. Further, recall that variant 0 is a summary
variant describing the effect of all contexts a function is called from.

Definition 6.1 Let e ∈ Expr be an expression. Let the set L(e) i approximating the
lvalues of e in variant i be defined by Figure 60. 2

The definition of L is justified as follows.
A constant has no lvalue, and the location of a variable is denoted by its name.4 The

lvalue of a struct indexing is the lvalues of the corresponding field. In the case of a pointer
dereference expression, the pointer abstraction is employed to determine the objects the
subexpression may point to. Similarly for array index expressions. Other expressions
have no lvalue.

Recall that the pointer analysis abstracts unknown and externally defined pointers by
the unique abstract location ‘Unknown’. For example, if L(e) = {Unknown}, it means
that the lvalue of e is unknown.

6.1.6 Overview of chapter

The rest of this chapter is organized into three main section. Section 6.2 develops a side-
effect analysis. We employ a standard algorithm for computation of control-dependence,
and present the side-effect analysis as a monotone data-flow problem. Section 6.3 develops
an in-use analysis. Both analyses use point-to information to approximate the usage
of pointers. Section 6.4 list related work, Section 6.5 discusses further work and and
conclude.

3“May” in the sense that it will definitely not point to an object not in the set.
4In practice, a name corresponds to a declarator, such that the locality of a variable can be checked.

198

www.manaraa.com

6.2 Side-effect analysis

A function commits a side-effect when it assigns a non-local object. The aim of side-effect
analysis is to determine side-effecting statements and functions. Accurate determination
is undecidable due to pointers. The analysis computes a safe approximation of the set of
statements and functions that may side effect at run time.

6.2.1 May side-effect

A side-effect occurs when a function executes an object setting operation that changes
the value of a non-local object. Examples include ‘g = 1’ (where ‘g’ is a global variable),
‘p->x = 1’ (where ‘p’ points to a heap-allocated struct), ‘f()’ (where ‘f’ is a side-effecting
function), ‘scanf("%d", &g)’, and ‘getch()’ (which side-effect the input buffer). The
latter two examples illustrate that externally defined functions may side-effect.

Naturally, it requires examination of a function body to determine whether it commits
side-effects. We will assume that externally defined functions are annotated pure if they
do not commit any side-effect. The present analysis can be employed to derive ‘pure’
annotations automatically.

Exact determination of side-effects is undecidable, even under the all-paths-executable
assumption. The reason being the un-decidability of pointers [Landi 1992b]. Consider an
assignment ‘*p = 1’. The classification depends on the pointer ‘p’. If ‘p’ points to a
non-local object, the expression is side-effecting. Since we only have imperfect pointer
usage information in the form of may point-to sets, we shall approximate side-effects by
may side-effect.

6.2.2 Side-effects and conditional side-effects

We differentiate between two kinds of side-effects: conditional side-effects and uncondi-
tional side-effects. In the following the latter is simply called a side-effect.

An assignment to a non-local object is called a conditional side-effect if the evaluation
of the assignment is under control of a test, e.g. an if statement, appearing in the same
function as the assignment. Thus, conditional side-effect is an intra-procedural property.

Definition 6.2 Define the side-effect domain SE = {⊥, †, ‡} with the following interpre-
tation:

⊥ no side-effect
† non-conditional may side-effect
‡ conditional may side-effect

and the order ⊥ < † < ‡. 2

We use the elements of the side-effect domain to annotate assignments. The annotation
e1 =† e2 denotes that the expression may side-effect (unconditionally), and e1 =‡ e2

indicates that the expression may commit a conditional side-effect. The conditional side-
effect annotation says nothing about the test that controls the side-effect. In practice it
is convenient to annotate with control-dependences as well.

199

www.manaraa.com

Example 6.5 Consider the annotated ‘push()’ function below.

int stack[MAX_STACK], sp;
/* push: push v on stack */
void push‡(int v)
{
/* 1 */ sp +=† 1;
/* 2 */ if (sp < MAX_STACK)
/* 3 */ stack[sp] =‡ v;
/* 4 */ else
/* 5 */ fprintf(stderr, "Push: overflow\n");
}

The first assignment side-effects the global variable ‘sp’. The second assignment is under
control of the if. End of Example

6.2.3 Using side-effect information

Recall that the generating-extension transformation in Chapter 3 expects all side-effects
under dynamic control to be suspended by the binding-time analysis (Chapter 5). Without
side-effect annotations the binding-time analysis must suspend all side-effects, and without
pointer information the binding-time analysis must suspend all indirect assignments! A
crude approximation to the set of conditional side-effects is the set of all side-effects. This
is, however, too coarsely for practical usage. For instance, it would render impossible
initialization of static, global data structures.

The result of the side-effect analysis can easily be employed to suspend side-effects
under dynamic control. All assignments annotated by ‡ are candidates. If they depend
on a dynamic test, they must be suspended.

Further, the analysis can be employed to derive ‘pure’ annotations automatically. If
a function contains no side-effects, it can be annotated ‘pure’.

6.2.4 Control dependence

A function is represented as a single-exit flow graph G = (S, E, s, e), where S is a set
of statement nodes, E a set of directed control-flow edges, and s and e unique start and
end nodes, respectively. Intuitively, a node n is control-dependent on a node m if m is a
branch node and n is contained in one the alternatives.

Definition 6.3 Let m,n ∈ S. Node m is post-dominated by n, m 6= n, if every path
from m to e contains n. Node n is control-dependent on m if i) there exists a non-trivial
path π from m to n such that every node m′ ∈ π \ {m, n} is post-dominated by n, and ii)
m is not post-dominated by n [Zima and Chapman 1991]. 2

Hence, for a node n to be control-dependent on m, m must have (at least) two exit edges,
and there must be two paths that connect m with e such that one contains n and the
other does not.

Control-dependence can easily be computed given a post-dominator tree as described
by Algorithm 6.1. Post-dominator trees can be constructed by computation of dominators
in the reverse control-flow graph [Aho et al. 1986].

200

www.manaraa.com

Algorithm 6.1 Computation of control-dependence for flow-graph G = (S, E, s, e).

1. Construct the post-dominator tree T for G.

2. Define E ′ = {〈m,n〉 ∈ E | n not ancestor for m in T}.
3. For all 〈m,n〉 ∈ E ′: traverse T backwards from n to m’s parent node and mark all

nodes n′ as control-dependent on m.

(See Ferrante et al. for a proof of the algorithm [Ferrante et al. 1987].) 2

A post-dominator tree can be constructed in time O(S) [Haral 1985] (O(S log(S))
[Lengauer and Tarjan 1979]). An edge can be determined to be in the set E ′ in con-
stant time, if the post-dominator tree is represented via bit vectors. Traversing the post-
dominator tree T can be done in time O(S) (the worst-case path length), hence the total
marking time is O(S2).

Definition 6.4 For a node m ∈ S, let CD(n) be the set of nodes on which n is control-
dependent (and empty if n is control-dependent of no nodes). 2

Example 6.6 Consider the program in Example 6.5. Statement 3 is control-dependent
on statement 2. Likewise, C(5) = {2}. End of Example

Remark. Recall from Chapter 2 that we assume all conditional expressions are trans-
formed into if-else statements. Therefore, a statement cannot be control-dependent on
an expression.

Example 6.7 Consider binding-time analysis of the program fragment below. Control
dependencies are indicated via program point.

/* 1 */ if (e1)
/* 2 */ if (e2)
/* 3 */ g = 2‡;

Statement 3 is correctly recorded to contain a conditional side-effect, and the control-
dependence relation describes the dependency CD(3) = {2}.5

Suspension of statement 3 depends on whether the test of one of the statements in the
transitive closure of CD(3) contains a dynamic expression. End of Example

6.2.5 Conditional may side-effect analysis

We describe the context-insensitive conditional may side-effect analysis. The extension
into context-sensitive analysis is straightforward (repeat analysis for each variant).

The may-side effect analysis is factorized into the following three parts:

1. Pointer analysis, to approximate point-to information (Chapter 4).

5Notice that 1 is not included in CD(3). On the other hand, CD(2) = {1}.

201

www.manaraa.com

2. Control-dependence analysis, to determine control-dependencies (Algorithm 6.1).

3. Conditional may-side effect approximation (Definition 6.5).

The conditional may side-effect analysis is defined as a monotone data-flow framework as
follows.

Definition 6.5 Conditional may-side effect analysis is given by D = 〈G∗,SE ,S〉, where
S is defined by Figure 61. 2

The function CSE : SE × Node → SE (Conditional Side-Effect) is defined by

CSE(s, n) = CD(n) 6= ∅ ∧ s = † → ‡ s

that is, CSE returns ‘‡’ if the statement contains a side-effect and is control-dependent on
a statement. For a statement s we denote by ns ∈ S the corresponding statement node.

The equations in Figure 61 determines a map σ : Id → SE from function identifiers
to a side-effect anotation. A solution to the equations in Figure 61 maps a function f
to ‡ if it may contain a conditional side-effect; to † if it may contain a (unconditional)
side-effect, and to ⊥ otherwise.

The rules for pre and post increment, and assignment use the function L to determine
the lvalues of expressions. If it contains a non-local object, i.e. an object not locally
allocated, the expression is side-effecting. To approximate the effect of indirect calls,
point-to information is used.

The rules for statements checks whether a contained expression may commit a side-
effect, and makes it conditional if the statement is control-dependent on a statement.

Lemma 6.1 The analysis function S (for functions) defined in Figure 61 is distributive
and bounded.

Proof By inspection of the rules. 2

Lemma 6.2 The analysis function S (for functions) defined in Figure 61 is rapid.

Proof For all functions f , we must check ∀y ∈ SE : S(f)[f 7→ y] w [f 7→ y]tS(f)[f 7→
⊥], where environments are ordered point-wise. This is obvious by definition of S. 2

Since the data-flow problem is distributive, a solution can be found by a standard
iterative solving procedure [Aho et al. 1986,Kildall 1973].

202

www.manaraa.com

Expressions
S[[c]] L σ = ⊥
S[[v]] L σ = v ∈ L → ⊥ †
S[[e1.i]] L σ = S(e1) L σ
S[[*e1]] L σ = S(e1) L σ
S[[e1[e2]]] L σ =

⊔
i S(ei) L σ

S[[&e1]] L σ = S(e1) L σ
S[[o e1]] L σ = S(e1) L σ
S[[e1 o e2]] L σ =

⊔
i S(ei) L σ

S[[alloc(T)]] L σ = ⊥
S[[ef(e1,. . . ,en)]] L σ = ef pure → ⊔

i S(ei) L σ †
S[[f(e1,. . . ,en)]] L σ = σ(f) u †
S[[e0(e1,. . . ,en)]] L σ = σ(f) u † f ∈ L(e0) 0
S[[++e1]] L σ = L(e1) 0 6⊆ L → † S(e1) L σ

S[[e1++]] L σ = L(e1) 0 6⊆ L → † S(e1) L σ

S[[e1 aop e2]] L σ = L(e1) 0 6⊆ L → † ⊔
i S(ei) L σ

S[[e1, e2]] L σ =
⊔

i S(ei) L σ
S[[sizeof(T)]] L σ = ⊥
S[[(T)e1]] L σ = S(e1) L σ

Statements
S[[s ≡ e]] L σ = CSE(S(e) L σ, ns)
S[[s ≡ if (e) S1 else S2]] L σ = CSE(S(e) L σ, ns) t ⊔

i S(Si) L σ
S[[s ≡ switch (e) S1]] L σ = CSE(S(e) L σ, ns) t S(S1) L σ
S[[s ≡ case e: S1]] L σ = CSE(S(S1) L σ, ns)
S[[s ≡ default: S1]] L σ = CSE(S(S1) L σ, ns)
S[[s ≡ while (e) S1]] L σ = CSE(S(e) L σ, ns) t S(S1) L σ
S[[s ≡ do S1 while (e)]] L σ = CSE(S(e) L σ, ns) t S(S1) L σ
S[[s ≡ for (e1;e2;e3) S1]] L σ = CSE(

⊔
i S(ei) L σ, ns) t S(S1) L σ

S[[s ≡ l: S1]] L σ = S(S1) L σ
S[[s ≡ goto m]] L σ = ⊥
S[[s ≡ return e]] L σ = CSE(S(e) L σ, ns)
S[[s ≡ { S1;. . . ;Sn}]] L σ =

⋃
i S(Si) L σ

Functions
S[[〈T, di, dj, Sk〉]] σ = σ[f 7→ σ(f) t S] where L = LocalObjects(di, dj)

S =
⊔

k S(Sk) L σ

Figure 61: Side-effect analysis

203

www.manaraa.com

6.2.6 Doing side-effect analysis

Algorithm 6.2 contains a simple iterative algorithm for conditional may side-effect anal-
ysis.

Algorithm 6.2 Iterative side-effect analysis.

σ = [fi 7→ ⊥];
do

σ0 = σ; σ = S(fi) σ;
while (σ 6= σ0)

2

Obviously, the above algorithm is not optimal. Better performance will be obtained
by a work-list algorithm where functions are visited in depth-first order according to the
call-graph [Horwitz et al. 1987].

Since annotation of statements solely depends on the side-effect of contained expres-
sions, it can be done during the analysis.

6.3 Use analysis

An variable is in-use at a program point if its value is needed in an evaluation before it
is redefined. This section develops an in-use analysis.

In-use analysis is similar to live-variable analysis [Aho et al. 1986] but differs with
respect to back-propagation of liveness into functions. Furthermore, the analysis of this
section is more fine-grained that classical live-variable analysis.

The analysis is applied in partial evaluation to avoid specialization with respect useless
static values, i.e. values that are not used in the further computation.

6.3.1 Objects in-use

In-use information is assigned to all sequence points6 and the entry and exit statement of
a function. Intuitively, an object is in-use at a program point, if there exists a use of the
object on a path to the exit node before it is redefined.

Definition 6.6 Let p be a program point in a function f = 〈S,E, s, e〉. An object o ∈
ALoc is (locally) in-use at program point p if there exists a use of o on an intra-procedural
path from p to e before o is assigned.

For a function f , define IU(f) ⊆ ALoc to be the set of objects in-use at the entry
node s of f . 2

The notion of ‘use’ is made precise below. Intuitively, an object is used in an expression
if its value is read from the store; this includes uses due to function calls. The set of
abstract locations ALoc was defined in Chapter 4.

6For ease of presentation we will ignore that ‘&&’ and ‘||’ constitute sequence points.

204

www.manaraa.com

Example 6.8 We have IU(main) = {a, a[]} and IU(inc ptr) = {ip}.
int main(void) int *inc_ptr(int *ip)
{ {

int a[10], *p, *q; return ip + 1;
p = &a[0]; }
q = int_ptr(p);
return *q;

}

Notice that ip[] is not in-use in function ‘inc ptr()’.
If it was changed such that it dereferenced its parameter, we would get IU(inc ptr) =

{ip, a[]}, since ‘ip’ points to the array ‘a’. End of Example

As opposed to classical live-variable analysis, in-use analysis expresses itself about
objects, and not variables. For example, Classifying ‘ip’ live (Example 6.8) means that
both the pointer and the indirection is live.

6.3.2 In-use and liveness

The notions of in-use and liveness are similar but do not coincide. The main difference is
that in-useness is not back-propagated into functions.

Example 6.9 Consider the following functions.

int global = 0;
int main(void)
{ int foo(int x)

int local; {
foo(local); return x;
return global; }

}

Live-variable analysis classifies ‘global’ as live throughout ‘foo()’ due to the return

statement in ‘main()’. In-use analysis reveals that only the parameter ‘x’ is used by
‘foo()’. End of Example

In-use information is more appropriate for partial evaluation than live variables. Re-
call that program points (functions) need not be specialized with respect to dead val-
ues [Gomard and Jones 1991a]. For instance, by specialization to live variables, function
‘foo()’ in Example 6.9 would be specialized with respect to ‘global’ which is superfluous.
On the other hand, in-use information is insufficient for e.g. register allocation or dead
code elimination, which rely on liveness [Aho et al. 1986]. In languages without functions
the notion of live variables and in-use variable is equal.

205

www.manaraa.com

6.3.3 Using in-use in generating extensions

In-use information can be employed in generating extensions to avoid specialization with
respect to useless values. A convenient way to convey in-use information is via bit-strings.

Since the number n of global variables is constant in all functions, we can employ
an enumeration where the first n positions denote the in-useness of globals, and the
following positions the in-useness of parameters and locals. The bit representation of
in-use is defined inductively as follows. For an object of base type, ‘1’ denotes in-use.
For an object of pointer type, ‘1[B]’ indicates that the pointer is in-use, and the B gives
the in-useness of the indirection. Similarly for array types. In the case of a struct type,
‘1{B. . . B}’ represents the in-use of the fields.

Example 6.10 The encoding of the in-use for ‘inc ptr()’ is "1[0]". End of Example

Section 3.12.3 describes the usage of in-use information.
The set IU(f) for a function f contains the object in-use at entry of f . The compu-

tation of the indirections of a parameter of pointer type that are in-use can be done by
the means of point-to information. If an object the pointer may point to is in-use, the
indirection is in-use.

6.3.4 In-use analysis functions

We formulate the in-use analysis as a backward, monotone data-flow analysis over the set
of abstract locations, with set union as meet operator. For each function f we seek a set
IUfun(f) ⊆ ALoc that describes the objects f uses.

In-use analysis of expressions is similar to live-variable analysis. For an expression e
we have the backward data-flow equation

IU before(e) = U(e) ∪ (IU exp(e)after \ D(e))

where U is the object used by e, and D is the objects defined by e. Figure 62 contains
the formal definition.

The definition of U and D is straightforward. The function L is employed to approx-
imate the effect of pointers. In the case of function calls, the objects used are added. As
apparent from the definition, we have given the context-insensitive version of the analysis.

In-use information valid before statement S is denoted by IU stmt(S)before, and the
corresponding information after S is written IU stmt(S)after. The analysis functions are
depicted in Figure 63.

The equations are straightforward. In the case of loops, information from the body and
the entry is merged. In the case of a return statement, the imaginary “exit statement”
Sexit is used instead of the “next” statement. This allows the general rule for statement
sequences.

Definition 6.7 In-use analysis is given by D = 〈G∗, ℘(ALoc), IUfun〉, where IUfun(f) =
IU stmt(Sentry) for all functions f ∈ G∗, and IU stmt is defined by Figure 63. 2

206

www.manaraa.com

Use analysis function
U [[c]] = {}
U [[v]] = v is FunId? → {} {v}
U [[e1.i]] = L(e1.i) 0 ∪ U(e1)
U [[*e1]] = L(∗e1) 0 ∪ U(e1)
U [[e1[e2]]] = L(∗e1) 0 ∪ ⋃

i U(ei)
U [[&e1]] = U(e1)
U [[o e1]] = U(e1)
U [[e1 o e2]] =

⋃
i U(ei)

U [[alloc(T)]] = {}
U [[ef(e1,. . . ,en)]] =

⋃
i U(ei)

U [[f(e1,. . . ,en)]] =
⋃U(ei) ∪ (IUfun(f) ∩ (LocalObject ∪GlobalObject))

U [[e0(e1,. . . ,en)]] =
⋃

i U(ei) ∪ (
⋃

f∈L(eo)0 IUfun(f) ∩ (LocalObject ∪GlobalObject))
U [[++e1]] = U(e1)
U [[e1++]] = U(e1)
U [[e1 aop e2]] =

⋃U(ei)
U [[e1, e2]] =

⋃
i U(ei)

U [[sizeof(T)]] = {}
U [[(T)e1]] = U(e1)

Define analysis function
Dexp[[e1 aop e2]] = L(e1) 0 ∪ Dexp(e2)

In-use analysis for expression
IU exp(e)before = U(e) ∪ (IU exp(e)after \ Dexp(e))

Figure 62: In-use analysis functions for expressions

The ordering on ALoc was defined in Chapter 4.

Lemma 6.3 In-use analysis is a distributive data-flow analysis.

Proof The analysis functions use union and intersect operators only. 2

6.3.5 Doing in-use analysis

The in-use analysis is factorized into the two subcomponents

1. Pointer analysis (Chapter 4).

2. In-use analysis (Definition 6.7).

The distributivity implies that a solution to an in-use problem can be found via a
standard iterative solving algorithm [Aho et al. 1986,Kildall 1973].

207

www.manaraa.com

IU stmt[[e]]before = IU exp(e)before,
IU exp(e)after = IU stmt(S)after

IU stmt[[if (e) S1 else S2]]before= IU ex(e)before,
IU stmt(Si)before = IU exp(e)after,
IU stmt(S)after =

⋃ IU stmt(Si)after

IU stmt[[switch (e) S1]]before = IU exp(e)before,
IU stmt(S1)before = IU exp(e)after,
IU stmt(S)after = IU stmt(S1)after

IU stmt[[case e: S1]]before = IU exp(e)before,
IU stmt(S1)before = IU exp(e)after

IU stmt(S)after = IU stmt(S1)after

IU stmt[[default: S1]]before = IU stmt(S1)before,
IU stmt(S)after = IU stmt(S1)after

IU stmt[[while (e) S1]]before = IU exp(e)before ∪ IU stmt(S1)after,
IU stmt(S1)before = IU exp(e)after,
IU stmt(S)after = IU exp(e)after

IU stmt[[do S1 while (e)]]before = IU stmt(S1)before ∪ IU exp(e)after

IU stmt(S1)after = IU exp(e)before,
IU stmt(S)after = IU exp(e)after

IU stmt[[for (e1;e2;e3) S1]]before = IU exp(e1)before,
IU exp(e2)before = IU exp(e1)after ∪ IU exp(e3)after,
IU stmt(S1)before = IU exp(e2)after,
IU exp(e3)before = IU stmt(S1)after,
IU stmt(S)after = IU exp(e2)after

IU stmt[[l: S1]]before = IU stmt(S1)before,
IU stmt(S)after = IU stmt(S1)after

IU stmt[[goto m]]before = IU stmt(Sm)before,
IU stmt(S)after = {}

IU stmt[[return e]]before = IU exp(e)before,
IU stmt(S)after = {},
IU stmt(S)exit = IU exp(e)after

IU stmt[[{ Si }]]before = IU stmt(S1)before,
IU stmt(Si+1)before = IU stmt(Si)after,
IU(S)after = IU stmt(Sn)after

Figure 63: In-use analysis functions for statements

208

www.manaraa.com

Algorithm 6.3 Iterative in-use analysis.

for (f in G) {
IU(f) = { };
for (s in f) IUstmt(s)before = { };

}
while (!fixed-point)

for (f in G) IU(f);

2

In an implementation, sets can be represented by bit vectors, enabling fast union
and intersection operations. Since we only are interested in in-use information at branch
statements and at entry to functions, the storage usage is modest.

6.3.6 An enhancement

A minor change can enhance the accuracy of the analysis. Consider the rules for function
calls IU exp(f(e1, . . . , en)). Suppose that f defines a global variable o. This implies that o
is not in-use before the call (unless it is part of the actual arguments). This can be taken
into account by subtracting the set Dfun(f) of the outward defined objects from the in-use
objects.

6.4 Related work

The data-flow analysis framework was first described by Kindall for distributive problems
[Kildall 1973], and later extended to monotone propagation functions by Kam and Ullman
[Kam and Ullman 1977]. We refer to Aho et el. for an introduction [Aho et al. 1986] and
Marlowe and Ryder for a survey [Marlowe and Ryder 1990b].

6.4.1 Side-effect analysis

The most work in side-effect analysis of programs solves the more complicated problem
of Def/Use [Aho et al. 1986]. Banning first factorized the problem into direct side-effects
and induced side-effects due to aliasing [Banning 1979]. Cooper and Kennedy presented
a linear time algorithm for the same problem [Cooper and Kennedy 1988].

Using an inter-procedural alias analysis, Landi et al. have developed a modification
side-effect analysis for a subset of C. The analysis uses a factorization similar to Banning’s
analysis. Choi et al. have constructed an analogous analysis [Choi et al. 1993].

Neirynck has employed abstract interpretation to approximate side-effects in a function
language [Neirynck 1988]. The problem is more complicated due to higher-order functions
and closures, but the repertoire of pointer operations is limited.

209

www.manaraa.com

6.4.2 Live-variable analysis

Live-variable analysis has been studied extensively in the literature, and used as an ex-
ample problem for several data-flow framework [Aho et al. 1986]. Kildall presents an
iterative algorithm for the classical, intra-procedural problem [Kildall 1973]. Kennedy
presents a node-listing algorithm [Kennedy 1975]. A comparison of an iterative and an
interval-based algorithms reveals that no method in general is more efficient than the
other [Kennedy 1976].

Yi and Harrison have designed a live-interval analysis based on abstract interpretation
for an imperative intermediate language [Yi and Harrison 1992]. It computes the interval
of an object’s birth-time and its dead.

6.4.3 Procedure cloning and specialization

Procedure cloning creates copies of functions for better exploitation of data flow informa-
tion. This can also be seen as specialization with respect to data flow properties. Thus,
there is an intimate connection between procedure cloning and function specialization.

6.5 Conclusion and Future work

We have formulated a side-effect and an in-use analysis as distributive data-flow analysis
problems, and given iterative solving algorithms.

6.5.1 Further work

The analyses presented in this chapter have been formulated as context-insensitive. The
extension to context-sensitive analyses is straightforward.

The in-use analysis has at the time of writing not been implemented. The side-
effect analysis is (as formulated here) not optimal. It traverses the program’s syntax tree
repeatedly. A better approach is to derive the data-flow equations, and solve these by
an efficient work-list algorithm. In this light, the analysis is similar to a constraint-based
analysis.

6.5.2 Conclusion

The classical data-flow analysis framework is often criticized for being without firm se-
mantically foundation. Even though we have not presented correctness proofs for the
analyses nor a throughout specification in this chapter, it seems obvious that it feasible.

More interesting, the in-use analysis closely resembles a constraint-based analysis. For
a statement S, let IU(S)before denote a set-variable, and Figure 63 gives the corresponding
constraint formulation of the problem. Thus, the difference between data-flow analysis
and constraint-based analyses (in finite domains) is minor. It also shows that classical
efficient data-flow algorithms may be of benefit in constraint-based program analysis.

210

www.manaraa.com

Chapter 7

Separate Program Analysis and
Specialization

Partial evaluation is a quickly evolving program specialization technique. The technology
is now so developed and mature that it is being applied in realistic software engineering.
In this chapter we study some of the problems that emerge when program transformation
systems are applied to real-world programs.

A pervasive assumption in automatic, global program analyses and transformers is that
a subject program consists of one module only. Existing partial evaluators are monolithic:
they analyze and specialize whole programs. In practice, however, software is structured
into modules each implementing different aspects of the complete system. Currently, the
problem is often side-stepped by merging of modules into one big file, but this solution
is infeasible and sometimes impossible. Storage usage can impose an upper limit on the
size of programs.

In this chapter we investigate separate analysis and separate specialization. As an
example problem we consider separate binding-time analysis that allows modules to be
analyzed independently from other modules. This objective is twofold: it becomes possible
to handle large programs in a convenient way, and modification of one module does not
necessarily mean that all modules have to be analyzed from scratch again. This may for
instance reduce the analysis overhead during the manual binding-time engineering often
necessary to obtain good results.

Next we extend the framework and consider incremental binding-time analysis that
accommodates modules to be changed without the binding-time solution having to be
recomputed from scratch. Both the separate and the incremental analysis is based on
constraint solving, and are extensions to the analysis developed in Chapter 5. Further,
we sketch how the principles carry over to other analyses.

In the last part of the chapter we study separate specialization. Partial evaluation is
an inherently global transformation that requires access to all parts of the program being
transformed. We outline the problems and present some preliminary methods.

Separate analysis has not been implemented into the C-Mix system at the time of
writing, but is expected to be of major practical importance.

211

www.manaraa.com

7.1 Introduction

Program transformation by the means of partial evaluation is a quickly evolving program
specialization technology which now has reached a state where it is being applied to non-
trivial real-life problems. Traditional partial evaluators are, as other global transformers,
monolithic: they analyze and transform whole programs. This conflicts with modern soft-
ware engineering that advocates organization of software into cleanly separated modules.

Practical experiments with the C-Mix system have revealed that separate treatment of
real-scale programs matters. So far, the problem has been overcome by merging different
translation units into one big file. In practice, though, it is infeasible to analyze and to
inspect binding time annotations in a 5,000 line program, say. Further, both the time and
storage usage become critical. Some techniques for treatment of modules are obviously
needed.

We have developed a separate and an incremental binding-time analysis. Further, we
consider separate specialization. As example we use the binding-time analysis developed
in Chapter 5, but the techniques carry over to other constraints-based analyses.

7.1.1 Partial evaluation and modules

Traditional partial evaluation is accomplished by the means of symbolic evaluation of the
subject program. If ‘mix’ is the partial evaluator and p the subject program, specialization
with respect to some static input s is performed by [[mix]](ppgm, sval) ⇒ ps

pgm, where ps is
the residual program.

In practice, p is separated into modules p = m1, . . . ,mn where each module implements
different aspects of the complete system. For example, one module opens and reads files,
and another module carries out some computations. In very large systems it is infeasible
to apply partial evaluation to all modules, and it is useless. Specialization of I/O modules
is not likely to result in any significant speedup. Thus, in practice we want to specialize
only some modules.

Applying ‘mix’ to a module, [[mix]](mi
pgm, sval) is not a solution. The module is incom-

plete and it may be non-trivial to deliver the static input to ‘mix’. For example, mi might
read a complicated data structure built by another module. It is not straightforward to
construct the static input by “hacking” the other modules since ‘mix’ uses its own repre-
sentation of data. Further, it is an undesirable feature of a transformation system that
programs have to be changed in order to be handled.

7.1.2 Modules and generating extensions

Consider now program specialization via generating extensions. To specialize module mi

we convert it into a generating extension [[gegen]](mi
pgm) ⇒ mgen

pgm, and link the modules
generating the static input. This is possible since the generating extension uses the same
representation of static data as the subject program. Thus, the generating extension
technique seems superior to traditional partial evaluation with respect to modules.

This is only a partial solution, however. If more than one module has to be specialized,

212

www.manaraa.com

both ‘mix’ and ‘gegen’ fall short. Suppose that mi and mj implement the code of interest
for specialization. It is then likely that mi, say, contains some external function calls to
function defined in module mj. Isolated analysis and specialization of mi will suspend the
calls to functions defined in mj, which probably will prevent good results.

The problem both ‘mix’ and ‘gegen’ (more precisely, the binding-time analysis) faces
is similar to the problem of type checking in the presence of modules. To check the types
of functions in a module, a C compiler most rely on type declarations supplied by the
user. Since modules contain no binding time annotations, a binding-time analysis most
make worst-case assumptions: all external references are suspended. However, it is both
undesirable and error-prone to indicate binding times manually. It is time consuming,
and due to unnoticed phenomena they may be wrong. Binding times should be inferred
automatically.

7.1.3 Pragmatics

So far users of partial evaluators have adopted a pragmatically oriented attitude and
applied various “tricks” to overcome the problems. For example, by merging two files
some externally defined functions may become defined. This does not, however, solve the
basic problem, even when the merging is done by the system.

Partial evaluation is no panacea, and sometimes a user has to “binding-time engineer”
a program to obtain good results. For instance, it may be necessary to suspend a static
variable to avoid code explosion. In practice, inspection of a program’s binding separation
is often required. Examination of 5,000 lines code, say, is not an option for a programmer.
It would be more convenient to inspect modules in separation.

Moreover, then a module is changed, the complete program must be analyzed from
scratch again. Wasteful if the modification only affects a minor part of the program,
possibly only the changed module.

By nature of binding-time analysis, it is not possible to analyze a module completely
separately from the modules it uses. Binding-time analysis is an inherently global analysis
that needs information about the status of externally defined identifiers. Moreover a
change in one module may influence the binding time division in other modules.

A possible way would be to let the partial evaluator system maintain a global binding-
time solution that is updated when modules are added, modified or removed. This way,
only the relevant parts of a software systems have to parsed and analyzed due to a change,
and modules do not have to be merged. The binding time division can be inspected module
by module.

To make this possible, a binding time signature from each module must be extracted
and given to a global binding time solver. A binding-time signature must capture the
dependencies between the module and externally defined identifiers. The global analysis
can then use the set of binding-time signatures to solve the global problem. Notice that
a binding time signature only has to be computed every time a module is changed. Not
every time a division has to be computed.

This chapter develops the needed techniques.

213

www.manaraa.com

HHHHHHHHj

´
´

´
´

´́+

»»»»»»»»»»»»»»»9

³³³³³³³³³³)

@
@

@
@R

XXXXXXXXXXXXXXXz

¾

¾

BTsigModule 1 Module 2 BTsig Module 3 BTsig

GEGEN BTABT

Figure 64: Separate binding-time analysis

7.1.4 Analysis in three steps

We develop a separate and an incremental version of the binding-time analysis from
Chapter 5. Recall that the binding-time analysis is implemented via constraint-solving.

The new analysis proceeds in the three phases:

1. Each module is parsed and binding time information is extracted and reduced.

2. The global binding-time problem is initially solved via a traditional constraint solver.

3. The global solution is maintained via an incremental constraint solver to accommo-
date modifications of modules.

To represent and maintain the global binding time solution, a data base is employed.
A user interface can extract information from the data base, e.g. to display annotated
module code. Figure 64 illustrates the partial evaluation system.

7.1.5 Separate specialization

A motivation for separate compilation is memory limitation. Large programs may exhaust
the compiler’s symbol table, or build (too) big internal representations. The same problem
is present in traditional partial evaluators, but less conspicuous in generating extensions.
A generating extension uses the same representation of static data as the subject program.

However, other reasons are in favor of separate specialization. For example, a huge
residual program may exhaust the compiler or give intolerably long compilation times.

7.1.6 Overview of chapter

The rest of the chapter is organized as follows. In Section 7.2 we describe the interference
between modules and specialization. Section 7.3 extends previous work on constraint-
based binding-time analysis into a separate analysis. Section 7.4 develops an incremental
constraint-solver that implements incremental binding-time analysis. Problems related to
separate specialization and transformation are discussed in Section 7.5. Related work is
mentioned in Section 7.7, and finally Section 7.8 concludes and gives directions for further
work.

214

www.manaraa.com

7.2 The problem with modules

All but trivial programs are separated into modules. In the C programming language a
module is a translation unit, which basically is a file of declarations. In this section we
investigate the interaction between global1 program analysis, specialization, and modules.

As an example we consider the following program which is built up of two translations
units.2

/* File 1 */ /* File 2 */
extern double pow(double,double); #include <errno.h>
int errno; extern int errno;
int goal(int x) double pow(double n, double x)
{ {

double d = pow(5.0,x); if (n > 0.0)
if (!errno) return exp(x * log(n));

printf("Result: %e\n,d); errno = EDOM;
return 0; return 0.0;

} }

In file 1, a function ‘pow()’ is declared and invoked from the ‘goal()’ function. In file 2,
the power function is defined. Errors are reported via the variable ‘errno’, which for the
sake of presentation is defined in the main module.

7.2.1 External identifiers

Suppose our aim is to specialize the main module with ‘x’ dynamic. Since the first
argument to the ‘pow()’ is a (static) constant, we might expect the call to be specialized
into a call ‘pow 5()’. However, since ‘pow()’ is an externally defined function, it cannot
be specialized — its definition is unknown at specialization time. Thus, nothing will be
gained by specialization.

Consider now the binding times of the identifiers in file 2. Seemingly, the external
variable ‘errno’ is used in a static context, but since it is defined elsewhere, a binding-
time analysis must necessarily classify it dynamic; external variables must to appear in
residual programs.

In summary: all references to externally defined identifiers must be suspended. A
consequence of this: all calls to the library functions, e.g. ‘sin()’, are suspended. They
are defined in the C library and ‘extern’ declared in the include files, e.g. <math.h>.

7.2.2 Exported data structures and functions

Consider again file 1 defined above. Apparently, ‘errno’ is a global variable belonging to
file 1. However, in C are global identifiers by default exported to other modules unless
explicitly defined to be local.3 Hence, a global definition can in principle be accessed

1“Global” is here used in the meaning “whole program”.
2We use translation unit and modules interchangeably.
3The scope of a global variable is restricted to a translation unit by the means of the ‘static’ storage

specifier.

215

www.manaraa.com

by all modules that declare it via ‘extern’. Looking at a module in isolation does not
reveal whether other modules modify a global variable. For example in file 1 it cannot be
determined that ‘pow()’ in file 2 writes to ‘errno’.

Obviously, suspension of global identifiers is too conservative for almost all practical
uses. In practice, it is convenient if the user via an option can specify whether a file makes
up a program, such that global identifiers can be classified static.4

Functions are exported like global variables. This means that functions not explicitly
made local by the means the ‘static’ storage specifier potentially can be called from
other modules. When modules are analyzed in isolation, call-sites and hence binding-
time patterns, will not be known. To be safe, a binding-time analysis must suspend
all arguments. Thus, no function specialization will take place. The situation can be
alleviated slightly by copying of functions such that local calls get specialized.

In summary: all identifiers not specified ‘static’ must be suspended.

7.2.3 Pure external functions

Suppose the call to ‘pow()’ in file 1 was ‘pow(5.0,2.0)’. In this case we expect the call to
be replaced by the result 32.0 provided the definition of ‘pow()’ is available. That is, file 2
is linked to the generating extension of file 1. Naturally, for a binding-time analysis to
classify a call to an external defined function static, it must “know” that the (compiled)
definition eventually will become available at specialization time.

However, as noted above, a safe binding-time analysis without global program infor-
mation must unconditionally suspend all calls to externally defined functions since they
may side-effect variables. One way to improve on this is to provide the binding-time
analysis with information about a function’s side-effects. We define a function to be pure
if it does not commit any side-effects during execution.

Assuming that externally defined function will be linked at specialization time, calls
to pure function with static arguments can be classified static. In the example, ‘pow()’
is not a pure function since it (may) side-effect the non-local variable ‘errno’. Actually,
many C library functions report errors via the ‘errno’ variable. Ways around this problem
exists such that for instance the functions in <math.h> can be specified pure.5

In the C-Mix system, a specifier ‘pure’ can be applied to specify side-effect free func-
tions. For example, ‘pure extern pow(double,double)’ would (erroneously) specify
‘pow()’ to be pure.

7.3 Separate binding-time analysis

We consider the following scenario. A software system consists of a number of modules:
‘file1.c’, . . . , ‘fileN.c’, and some standard libraries. The aim is to specialize some of
the files, but not necessarily all. Using a monolithic binding-time analysis, all the relevant
files would have to be merged and analyzed coherently.

4In C-Mix a user can by the means of an option specify that a file is a program.
5This is much trouble for almost no gaim since the majority of programmers do not even bother to

check for errors.

216

www.manaraa.com

In this section we describe a separate binding-time analysis that analyse modules
separately. The idea is to perform the analysis in two steps: first essential binding-time
information for each module is extracted and stored in a common data base. Next, the
global binding-time problem is solved. The first step only has to be done one time for each
module despite that the global problem is solved several times, e.g. due to modifications
or manual binding-time engineering. Ideally, as must work as possible should be done in
the first phase.

Some of the benefits are:

• Efficiency: a file only has to be parsed and analyzed once even though other files
are modified repeatedly.

• Re-usability: a module can be used in several contexts but has only to be analyzed
once. Prime example: library functions.

• Convenience: the user can analyze and inspect binding-time without having to
change the logical structure of the program.

Moreover, the software does not have to be rewritten or rearranged to meet the require-
ments of the system, which is an issue when partial evaluation is applied to existing
programs.

We refer to a static analysis that works across module boundaries as an inter-modular
analysis, opposed to an intra-modular analysis. Binding-time analysis is inter-modular
since the binding-times of one module (may) depend on the binding-times other modules,
e.g. due to external variables. The output of a separate analysis shall equal the result of
a intra-modular analysis of the union of all files.

Restriction: in this section we consider monovariant binding-time analysis only. To an-
alyze languages like C, other inter-procedural and inter-modular analyses may be needed,
for instance pointer and side-effect analysis. We return to this in Section 7.6.

7.3.1 Constraint-based binding-time analysis revisited

This section briefly reviews the binding-time analysis in C-Mix, see Chapter 5. The
analysis is specified as a non-standard type-inference, and implemented by the means of
constraint solving. In practice, the analysis is intermingled with parsing and static type
inference but we give a self-contained presentation here.

The analysis basically consists of three steps:

1. Generation of a constraint system capturing the binding-time dependencies between
expressions and subexpressions.

2. Normalization of the constraint system by exhaustive application of a set of rewrite
rules.

3. Computation of a minimal solution to the normal-form constraint system.

217

www.manaraa.com

The first step can be done by a syntax-directed traversal of the syntax tree. The normal-
ization can be accomplished in time linear in the number of constraints.

Given a binding time classification of all variables (a division), it is easy to derive an
annotation.6

Example 7.1 Consider the assignment ‘errno = EDOM;’ from Section 7.2. Recall that
‘errno’ is ‘extern’ declared in file 2.

The following constraints could be generated:

C =

{〈
int

βEDOM

〉
=

〈
int

S

〉
,

〈
int

βerrno=EDOM

〉
=

〈
int

βerrno

〉
,

〈
int

βEDOM

〉
¹

〈
int

βerrno

〉}

where βerrno denotes the binding time (variable) associated with ‘errno’. To the system
the constraint D > βerrno would be added if file 2 was analyzed in isolation, effectively
suspending ‘errno’. End of Example

A constraint system can be normalized by exhaustive application of a set of solution
preserving rewrite rules. A normal form constraint system consists of constraints of the
form

〈
τb
S

〉
¹

〈
τb
β

〉
, β > β′.7 A solution to a constraint system is a substitution from

binding time variables to S and D such that all constraints are fulfilled. Since a minimal
solution maps all β in

〈
τb
β

〉
to S unless it is dynamic due to a dependency constraint

β1 > β, it suffices to consider dependency constraints.

7.3.2 Inter-modular binding-time information

The binding time of a global identifier is determined by the module defining it and other
modules’ use of it, cf. Section 7.2. Without global information a binding-time analysis
must revert to worst-case assumptions and suspend all global references. However, when
it is known that an identifier eventually becomes defined, it may not be necessary to
suspend it.

The set of identifiers exported by a module is called the provided set ; the set if iden-
tifiers imported by a module is called the required set [Cooper et al. 1986b]. In the C
language, global variables defined without use of the ‘static’ storage specifier are in the
provided set. Identifiers declared ‘extern’ are in the required set.8 Identifiers declared
‘static’ are neither required nor provided; we often call those private.

Example 7.2 Consider file 2 in Section 7.2. The required set contains ‘errno’. The
provided set includes ‘pow’. There are no private identifiers. End of Example

Even though a constraint system corresponding to a module can be normalized, in
general a solution can not be found. There are two reasons: the binding times of required
identifiers are unknown, and secondly, the use of provided identifiers is unknown.

6The division must also contain binding times for allocation calls and type definitions.
7See the corresponding theorem in Section 5.4.
8Assuming that extern declared identifiers are actually referenced.

218

www.manaraa.com

The separate analysis proceeds in two main phases. The first phase generates and
normalizes constraint systems for each module. This is a local (modular) phase; modules
are analyzed independently. The second phase solves the global constraint system corre-
sponding to all modules. This phase is global: it applies to all modules (even though the
separate modules are not parsed and analyzed again).

Example 7.3 Consider the file 2 listed in Section 7.2. Phase one would generate a
constraint system containing the constraints listed above. If the global constraint solver is
applied, constraints to suspend external identifiers must be added. If the global constraint
solver is applied to the constraint systems for both file 1 and file 2, all identifiers are
defined, and no suspension constraints have to be added. End of Example

To keep track of symbols and constraint systems we use a global data base mapping
identifiers to bt-types.9 [Cooper et al. 1986a,Ross 1986].

7.3.3 Binding-time signatures

A module’s binding-time signature consists of the following information:

• The binding-time type of all global identifiers.

• The provided and required sets.

• The binding time constraint system.10

The bt-types provide the link between an identifier and its binding-time variables. The
provided and required sets can easily be identified via the ‘extern’ and ‘static’ storage
specifiers. The (normalized) constraint system is a a set of equations over binding time
variables.

Example 7.4 The binding-time signature of file 2 from Section 7.2 is listed below.

#file "file2.c"
extern errno: <int,T1>

pow: <(<double,T2>,<double,T3>),T4><double,T5>
#bta
T4 |> T5
more constraints

First follows an identification of the translation unit. Next is listed the type of global
identifiers and possibly storage specifiers. The last part contains the binding time con-
straint system.

We assume that binding time variables are unique, e.g. prefixed with the module’s
name. End of Example

9In practice the data base would distributed and kept with each file but this is of no importance.
10Add constraints/data-flow equations for other analyses.

219

www.manaraa.com

Generate file.cmix containing binding-time information.
$ cmix -c file.c
Read file?.cmix, solve constraints, and generate file?-gen.c.
$ cmix -m file?.c
Compile the generating extension files
$ cc -c file?-gen.c gen.c
Link the object files to produce gen
$ cc file?-gen.o gen.o -lcmix -o gen

Figure 65: Separate generation of a generating extension

The number of binding time constraints are linear in the number of expressions, and
typically much lower. In the case where all global identifiers are private, i.e. declared
‘static’, all constraints can be solved. For convenience we add local variables to binding
time signatures. This allows for example a user interface to enquire the data base about
the binding time of variables in a convenient way.

7.3.4 Doing inter-modular binding-time analysis

The global solving process proceeds in three phases. First the relevant signature files are
read, and a symbol table mapping identifiers to their type (and binding-time variables) is
established. Identifiers declared in several modules are identified and the corresponding
binding time variables unified. In practice this can done by adding equality constraints to
the global constraint system. The symbol table is updated to reflect whether an identifier
is defined or external for all modules. Static identifier are named uniquely such that no
name conflicts occur. Finally, the global binding time constraint system is collected from
the binding time signatures.

Next, the symbol table is scanned for remaining ‘extern’ declared identifiers. Con-
straints suspending these are added. Further, constraints suspending an identifiers can
be added, e.g. due to user annotations.

Lastly, the global constraint system is solved. The symbol table provides the link
between an identifier and its binding time. The consumer of binding times, for instance the
generating-extension transformation in Chapter 3, enquires the data base about identifiers
binding time, see Figure 64.

Algorithm 7.1 Inter-modular binding-time analysis.

1. Read binding-time signatures, build symbol table and set up global constraint system.

2. Add suspension constraints for externally defined identifiers.

3. Solve the global constraint system.

The symbol table contains the computed division. 2

We consider each phase below. In Figure 65 a “session” with a separate analysis is
illustrated.

220

www.manaraa.com

The symbol table

The symbol table provides the connection between an identifiers and its bt-types. We
model it as a map B : Id → Storage × Type. In practice, the symbol table can be
implemented via a hash table, say. The operations needed are ‘lookup’ and ‘insert’.

During the scan of binding-time signatures, storage specifications are resolved. If a
definition of a (previously) ‘extern’ declared identifier is met, the ‘extern’ flag is removed
from the entry. Further, the bt-types of identical identifiers are unified, e.g. by addition of
equality constraints to the global constraint system. This step corresponds to the actions
taken by a linker to link separately compiled files.

Example 7.5 Consider once again the example program from Section 7.2. The symbol
table is illustrated below.

errno 7→
〈

int
βerrno

〉

goal 7→
〈(〈

int
βx

〉)

β

〉 〈
int
βgoal

〉

pow 7→
〈(〈

double
βn

〉
,

〈
double

βx

〉)

β

〉 〈
double
βpow

〉

When the two files are linked, all identifiers become defined, as evident from lack of
‘extern’ specifiers above. An extern variable, e.g. the io-buffer struct iobuf[]iob11

would appear in the symbol table as

extern iob 7→
〈

[]

β1

〉 〈
struct iobuf

β2

〉

Static identifiers are named uniquely, henceforth there is no need for a ‘static’ storage
specifier. End of Example

At the end of the analysis, the symbol table contains the computed division, for
example, B(errno) =

〈
int
S

〉
.

Suspension constraints

The aim of this phase is to add constraints which suspend external identifiers. For an iden-
tifier x with bt-type T which is recorded to be external by the symbol table, a constraint
D > T#b is added to the constraint system.

Example 7.6 The constraint D > β1 suspends the ‘iob’ variable. End of Example

It has been implicit in the above exposition that a whole program is binding time
analyzed. It may, however, be convenient to apply the separate analysis to parts of a
system. In this case constraints suspending global identifiers must be added to the global
constraint system. We assume that a user option specifies whether the files constitutes a
complete program.

11Declared in <stdio.h>.

221

www.manaraa.com

Example 7.7 In experiments it is often useful to suspend static variables, e.g. to avoid
code explosion or specialization of code with little prospective speedup. In C-Mix, a
specifier ‘residual’ can be employed for this. Constraints suspending ‘residual’ declared
identifiers can be added as part of a module’s constraint system, or to the global system.
The latter is convenient in an environment where the user interactively can inspect the
effect of suspensions. End of Example

Constraint system solving

The global constraint system can be solved using the techniques developed in Chapter 5,
that is, by normalization. Notice that although the constraint system for each module is
normalized, the global constraint system needs not be in normal form. For example, an
identifier may be assigned the result of an external, dynamic function. The runtime of
the algorithm is linear in the number of constraints, see Section 5.5.

The solving procedure can implemented as described in Chapter 5 such that binding
time variables in the symbol table are destructively updated with the solution.

7.3.5 Using binding-times

The approach described here deviates from the framework in Chapter 5 in that the syntax
tree is not directly annotated by binding time as a result of the constraint solving. Instead,
the binding times of identifiers are recorded in the symbol table.

As described in Section 5.4.7 it is easy to derive an annotation from a division by
a simple bottom-up traversal of the syntax tree. This can either be done during the
(generating-extension) transformation, or in a separate step.

7.3.6 Correctness of separate analysis

We formulate the correctness criterion for the separate binding-time analysis, and prove it
correct. The correctness follows from the correctness of the monolithic analysis, Chapter 5.

Theorem 7.1 Let ‘file1.c’, . . . , ‘fileN.c’ be translation units. Applying the separate
binding-time analysis to ‘file1.c’, . . . , ‘fileN.c’ gives same result as the monolithic
analysis applied to the union of the files.

Proof The separate analysis resolves storage specifications the same way as when trans-
lation units are merged manually, i.e. it complies to the Ansi C Standard [ISO 1990].
This implies that the same suspension constraints are added to the global constraint
system as the monolithic analysis would do. In the monolithic analysis, an identifier is
assigned exactly one binding time variable. The equality constraints added in the separate
analysis assures that identifiers with the same location are unified. Hence, the constraint
system built by the separate analysis has the same solution as the system the monolithic
analysis solves. 2

222

www.manaraa.com

7.4 Incremental binding-time analysis

The separate analysis of the previous section computes a program’s division from scratch
every time a module is changed. This section develops an incremental analysis that allows
a solution to a constraint system to be updated according to changes in modules.

7.4.1 Why do incremental analysis?

Existing binding-time analyses are exhaustive; they re-compute the solution from scratch
every time a part of the program changes. Clearly, even though modern analyses tend to be
fast this may be a time-consuming task, and is inconvenient in an interactive programming
environment where fast response time is essential. Using an incremental analysis, only
the affected part of the solution has to be re-computed.

An example. Program specialization is still an engineering process: the user analyzes
the functions, inspects the binding-times, and probably manually suspends a variable by
insertion of a directive, e.g. a ‘residual’ flag. From the analysis point of view, the change
typically consists of the addition of a new constraint D > β. Yet, an exhaustive analysis
would generate the complete constraint system again and solve it. The separate binding-
time analysis renders generating of the complete constraint system superfluous, but the
solution of the global systems still have to be found from scratch.

Another example. Automatic binding-time annotation of programs during editing,
for example in a structured programming environment, may provide the programmer
with valuable information. The idea is that the programmer during the editing of a file
interactively can see the binding times, and thus immediately avoids undesired program
constructs. Since constraint-based binding-time analyses essentially generate constraints
in a syntax-directed manner, the incremental analysis presented here can be used to
maintain an evolving solution to a changing constraint set.12

In this section we solely consider binding-time analysis. Incremental pointer analysis
is briefly considered in Section 7.6 and incremental versions of classical data-flow analyses
are referenced in Section 7.7.

7.4.2 The basic idea

The basic idea in the incremental constraint solver is to maintain a solution while con-
straints are added or removed. In the original presentation of constraint-based binding-
time analysis of an untyped lambda calculus, Henglein briefly described an extension
accommodating addition of constraints [Henglein 1991]. His algorithm does not, however,
supports deletion of constraints. Thus, a solution can only be made more dynamic, never
the contrary. The reason for this is the use of destructively updated data structures.

The situation resembles the conditions for re-iteration of a fixed-point solver for find-
ing a solution to an altered data-flow equation system [Ryder et al. 1988]. A necessary
condition is that the solution to the new system is bigger than the old solution. This

12We do not claim that the algorithms developed in this chapter are sufficiently fast, though.

223

www.manaraa.com

implies that if a user has inserted a ‘residual’ specifier, it “cannot” be removed again,
unless the solution is computed from scratch.

We describe an incremental constraint-solver which allows constraints to be both added
and removed. The scenario is as follows. The global constraint solver maintains a solution
for all the files currently in “scope”, e.g. a program. When a file is updated, the old
constraints are removed, and the new set of constraints added. When a constraint is
removed, its effect on the solution is “undone”.

7.4.3 The components of an incremental constraint solver

An incremental constraint solver has three parts. A map representing bindings of identi-
fiers to their bt-type (symbol table),13 and routines for adding and deleting constraints.
We assume that constraint sets are pre-normalized such that all equality constraints are
removed (via substitutions/unification).

Representation of the solution

A solution maps binding time variables to either S or D. If un-instantiated variables are
interpreted as S, only bindings to D have to be represented. A binding-time variable β
can be dynamic for two reasons: due to a constraint D >β, or due to a constraint β1 >β
where β1 is dynamic. Finally, notice that a variable may be dynamic due to more than
one constraint. On the other hand, if a variable is dynamic due to exactly one constraint
and that constraint is deleted, the solution changes such that the variable is static.

We represent this by a map B : BType → ℘(BType)×IN . Suppose B(β) = (T, n). The
first component T ⊆ ℘(BVar) is the (multi-)set14 of variables which directly depends on
β. A variable β2 directly depends on β1 if there exists a constraint β1 > β2. For example,
given constraints {β1 >1β2, β1 >2β2} (where we have labeled constraints), we have that β2

directly depends on β1 due to the constraints 1 and 2. The number n denotes the number
times β is “forced” to be dynamic. Thus, n = 0 means that β is static. Intuitively, n is
the number of constraints B > β where B is D or a variable which (currently) is mapped
to dynamic.

Example 7.8 Suppose the following constraint set is given by C = {β1 >β2, β1 >β2, β2 >
β1, D > β3, D > β3}. The (current) solution is given by the map B:

B = [β1 7→ ({β2, β2}, 0) , β2 7→ ({β1}, 0) , β3 7→ ({}, 2)]

Variables β1 and β2 are static and depend on each other. The variable β3 is dynamic,
and no variables depends on it. Notice how the “dynamic-count” of β3 is 2 since two
dependency constraints force it to be dynamic. End of Example

The reason for the use of a count as opposed to a boolean flag for representing “dy-
namic” is the following. Suppose that a variable β is dynamic due to the constraints D >β

13In practice, the symbol table also represents other information, e.g. storage specifiers.
14The same constraint may appear multiple times in the constraint set.

224

www.manaraa.com

and D > β. If the first constraint is removed, the solution does not change. However, if
the second also is removed, the solution must be updated to reflect that β now is static.
Thus, the count represents the “number of constraints that must be removed before β
becomes static”.

For simplicity we take B(β) undefined to mean B(β) = ({}, 0), i.e. β is static. In
an implementation the binding map can be represented via a hash table ‘hash’ with two
methods: lookup() to search for a recorded binding, and insert() to destructively insert
a new binding. We assume that the value D (dynamic) is pre-inserted into ‘hash’ such
that constraints D > β can be handled as other constraints.

Adding a constraint

We consider addition of a constraint while maintaining the current solution. Three cases
are possible. The constraint does not effect the current solution (simply add it); the con-
straint makes a variable dynamic (update the binding map to reflect it); or the constraint
introduces a new dependency between variables (update the binding map to reflect it).
Since we assume D is represented as a variable, the first and last cases can be treated as
one. Adding a constraint can by nature never make a solution less dynamic.

Algorithm 7.2 Add set of constraints.

/* Add constraints C’ to the current constraint system C */
add_constraint(C’)
{

for (c = T1 > T2 in C’)
add_dep(T1, T2);

C ∪= C’;
}

The function ‘add dep()’ is defined by Algorithm 7.3 below. 2

The algorithm uses the auxiliary function ‘add dep()’. A constraint of the form D > β
forces β to become dynamic. This is implemented via the function ‘dynamize’. Other
constraints simply causes the dependency lists to be updated.

Algorithm 7.3 Dynamize and add dependency.

/* Make T dynamic */ /* Add dependency T1 > T2 */
dynamize(T) add_dep(T1, T2)
{ {

(T0,n0) = hash.lookup(T); (T0,n) = hash.lookup(T1);
hash.insert(T,(T0,n0+1)); hash.insert(T1, (T0 ∪ { T2 }, n));
if (n0 == 0) /* upd. dep. var */ if (n > 0) /* dynamic */

for (t in T0) dynamize(t); dynamize(T2)
} }

2

The function ‘dynamize()’ increases the dynamic-count associated with a type variable. If
the variable changes status from static to dynamic, all dependent variables are dynamized
too. The function ‘add dep()’ adds a dependency between two type variables β1 > β2. If
β1 is dynamic, the variable β2 is dynamized.

225

www.manaraa.com

Example 7.9 Suppose the current constraint system is as defined in Example 7.8. Add
the constraints {D >β1, β3 >β4} using Algorithm 7.2. The new binding map is given by

B = [β1 7→ ({β2, β2}, 2), β2 7→ ({β1}, 2), β3 7→ ({β4}, 2), β4 7→ ({}, 1)]

which is a correct solution to the current constraint system

C = {β1 > β2, β1 > β2, β2 > β1, D > β3, D > β3, D > β1, β3 > β4}
as desired. End of Example

Deleting a constraint

Removing a constraint from the current constraint system may cause the solution to
become “less” dynamic, i.e. some variables may change status from dynamic to static.
This happens when the “last” constraint “forcing” a variable to be dynamic is removed.

Algorithm 7.4 Remove set of constraints.

/* Remove constraints C’ from current constraint set C */
remove_constraint(C’)
{

for (c = T1 > T2 in C’)
remove_dep(T1,T2); break; /* Remove dep */

C \= C’;
}

The ‘remove dep()’ function is defined by Algorithm 7.5. 2

Removal of a constraint D > β causes β to be “less” dynamic. This is implemented
via the ‘staticize()’ function. In other cases the dependency lists are updated. The set
difference operator is a multi-set operator that removes one occurrence of each element
in C ′ from C.

Algorithm 7.5 Staticize and remove dependency.

/* Make variable T more static */ /* Remove dependency T1 > T2 */
staticize(T) remove_dep(T1,T2)
{ {

(T0,n0) = hash.lookup(T); (T0,n0) = hash.lookup(T1);
hash.insert(T,(T0,n0-1)); hash.insert(T1,(T0\{T2},n0));
if (n0 == 1) if (n0 > 0)

/* Staticize dependent variables */ /* Staticize dependent variable */
for (t in T) staticize(t); staticize(T2);

} }
2

The algorithm ‘staticize()’ decreases the dynamic-count of the variable. If it be-
comes static, that is, zero, dependent variables are staticized as well. The function
‘remove dep()’ removes a dependency β1 > β2 between two variables. If β1 is dynamic,
β2 is made less via ‘staticize()’.

226

www.manaraa.com

Example 7.10 Suppose the constraints added in Example 7.9 are removed again.
Removing D >β1 causes the level of β1 to be decreased by one, but it remains dynamic.

Removing the constraint β3 >β4 eliminates β4 from the dependency set of β3, and decreases
the level of β4 to zero.

Hence, modulo the empty (static) binding of β4, we end up with the same solution as
in Example 7.8, as expected. End of Example

Self-dependencies (as present in the examples above) can be handled the following
way. Consider a constraint systems as a graph. When a constraint of the form D > β
is removed from the constraint set, the strongly-connected component containing β is
computed. If none of the variables in the component are forced to dynamic by D, all
variables (if they are dynamic) are changed to be static.

7.4.4 Correctness of incremental binding-time analysis

This section proves the correctness of the incremental constraint solver. In the following
C denotes the current constraint set and B the current solution.

Definition 7.1 A map B is called a valid solution to a constraint set C if for all β in C,
if B(β) = (T , n), then:

• T = {β′ | ∃(β > β′) ∈ C},
• n = |{D > β ∈ C} ∪ {β′ > β | B(β′) = (T ′, n′), n′ > 0}|

and B(β) = ({}, 0) for all other variables. 2

Let a map B be given. The map obtained by application of Algorithms 7.2 and 7.4 on
constraint system C ′ is denoted by B′. Clearly, to prove the correctness of the incremental
solver, it suffices to consider addition versus deletion of a single constraint.

Lemma 7.1 Let C be a constraint set and c a constraint. Assume that B is a valid solution
to C. Then the map B′ obtained by application of ‘add constraint()’ (Algorithm 7.2)
yields a valid solution B′ to C ′ = C ∪ {c}.

Proof (Informal) There are two cases to consider.

• c = D > β. Let (T , n) = B(β). If n is the number of constraints forcing β to be
dynamic in C, then n+ 1 is the number of constraints making β dynamic in C ′. If β
is dynamic before the addition of c (n > 0) then B′ is a valid solution for C ′ (holds
also when β depends on itself). If β not is dynamic before the addition of c (n = 0),
then all dependent variables correctly are updated to be dynamic in B′.

• c = β1 > β2. Let (T , n) = B(β1). If the variables in T depend on β1, then the
set T ∪ {β2} depend on β1 after the inclusion of c. The binding time status of β1

does not change due to the addition of c. If β1 is dynamic (n > 0), then one more
constraint makes β2 dynamic. The correctness of this operation follows from the
first part of the proof.

227

www.manaraa.com

This shows the correctness of ‘add constraint()’. 2

Lemma 7.2 Let C be a constraint set and c a constraint. Assume that B is a valid solution
to C. Then the map B′ obtained by application of ‘remove constraint()’ (Algorithm 7.4)
is a valid solution to C ′ = C \ {c}.

Proof (Informal) The proof is analog to the proof of Lemma 7.1. There are two cases
to consider.

• c = D > β. Let (T , n) = B′(β). In the set C there is one less constraint that forces
τ to be dynamic, hence B′(β) = (T , n− 1). If the deletion of c makes β static (i.e.
n = 1), the dynamic-count of all dependent variables are decreased by one.

• c = β1 > β2. Let (T , n) = B(β1). The dependency map in B′ is correctly updated
to reflect that β2 does not dependent on β1 due to c15 If β1 is dynamic (n > 0), then
β2 is dynamic due to one less constraint, namely c. The correctness of this follows
from the first part of this proof.

This shows the correctness of ‘remove constraint()’. 2

Theorem 7.2 Let C be a constraint set and B a valid solution. The solution obtained by
addition or deletion of a set of constraint by application of ‘add constraint()’ (Algo-
rithm 7.2) and ‘remove constraint()’ (Algorithm 7.4) is a valid solution to the resulting
constraint system.

Proof Follows from Lemma 7.1 and 7.2. 2

This demonstrates the correctness of the incremental constraint solver.

7.4.5 Doing incremental binding-time analysis

An incremental update of the current binding-time division due to a modification of a file
can be summarized as follows.

Algorithm 7.6 Incremental binding-time analysis.

1. Read the file’s signature file, and remove the constraints from the current constraint
set. Possibly remove suspension constraints.

2. Perform the modification.

3. Apply the local part of the separate binding-time analysis to obtain a new constraint
set.

15Recall that more than one constraint β1 > β2 may exist.

228

www.manaraa.com

4. Read the signature files, and add the new constraints to the current constraint set.

5. Possibly add suspension constraints.

Step 2 and step 4 uses ‘add constraint()’ and ‘remove constraint()’, respectively. 2

Notice that during the removal of constraints, the global symbol table must be updated
according to the changes. For example, if the definition of a variable if removed, the entry
must be attributed with an ‘extern’ storage specifier.

In step 4 it is crucial that the binding-time analysis uses the same variable names as
previously. This is easily fulfilled by making variable names unique. In step 5, the symbol
table must be scanned in order to add suspension constraints, e.g. due to externally
defined identifier.

7.5 Separate specialization

We have described separate binding-time analysis, and developed an incremental con-
straint solver that accommodates modifications of modules. This section is concerned
with separate specialization, that is, specialization of a program by individual specializa-
tion of the modules.

There are several convincing reasons for pursuing this goal. However, partial evalua-
tion is an inherently global process that relies on the presence of the complete program.
We describe these and outline necessary conditions for separate specialization. Finally,
we consider specialization of library functions.

7.5.1 Motivation

Assume again the usual scenario where a program is made up by a set of modules
file1.c,. . . , fileN.c. The aim is to specialize these. For this, we apply the sepa-
rate binding-time analysis, transform each file (individually) into generating extensions,
link all the generating extensions together, and run the executable. The idea is to special-
ize the files separately, that is, to run each generating extension file-gen.c separately.
There are several advantages contained herein:

• A specialized (residual) program is often larger than its origin, and may thus ex-
haust a compiler. With separate specialization, the residual program is contained
in several modules file1-spec.c,. . . , fileN-spec.c which are more likely to be
manageable by a compiler.

• Manual binding-time engineering often has a rather limited impact on the overall
specialization. Hence, changing one module normally causes only a few residual
functions to be changed. There is no need to specialize the program from scratch
again.

• Separate specialization enables re-use of residual code. For example, an often-used
library can be specialized once to typical arguments, and shared across several
specializations.

229

www.manaraa.com

The procedure would then be: run each of the generating extensions file1-gen.c, . . . ,
fileN-gen.c to obtain residual modules file1-spec.c, . . . , fileN-spec.c, which then
are compiled and linked to form the specialized program.

In the next section we analyze the problem and explain why separate specialization
to some extent conflicts with partial evaluation.

7.5.2 Conflicts between global transformations and modules

We identify the following two main reasons why separate specialization fails: preservation
of evaluation order and the passing of static values between module boundaries.

In imperative languages, dynamic functions can “return” static results by side-effecting
non-local static variables. For practical reasons, it is desirable to allow this, for instance
to initialize global data structures, or to heap-allocates partially static objects. When
functions (possibly) have static side-effect, depth-first specialization of function calls are
required. Otherwise the evaluation order may be changed. Since function calls may be
across module boundaries, this renders separate specialization difficult.

Suppose we disallow non-local functions to have side-effects. This implies that a
dynamic function call cannot affect the subsequent specialization of the caller, and thus
the called function can be specialized at a later stage. However, this requires that values of
static arguments are stored, and the value of global variables the function uses. This may
be a non-trivial task in the case of values of composed types (e.g. pointers and structs) and
heap-allocated data structures. Thus, separate specialization in general requires storing
and establishing of computation states between program run.

7.5.3 Towards separate specialization

We say that a module is amenable to separate specialization provided all functions (that
actually are called from other modules) fulfills:

• only have static parameters of base type,

• only uses non-local values of base type,

• accomplishes no side-effects.

The restrictions are justified as follows.
When a function only takes base type arguments and uses non-local values of base

type, these can easily be stored in for example a file between module specializations.
The last requirement assures that the evaluation order is preserved even though function
specialization is performed breadth-first as opposed to the depth-first execution order.

More concretely, separate specialization can proceed as follows. When a call to a
function defined in a module amenable for separate specialization is met, the call, the
static arguments and the values of used global variables are recorded in a log (e.g. a file).
A residual call is generated immediately without specialization of the function definition.
After the specialization, the module is specialized according to the log.

230

www.manaraa.com

Practical experiments are needed to evaluate the usefulness of this method. We suspect
that the main problem is that functions amenable for separate specialization are mixed
with other functions. Libraries, on the other hand, seem good candidates for separate
specialization.

7.5.4 A example: specializing library-functions

Practical experiments have revealed that it sometimes is worth specializing standard-
library functions such as ‘pow()’. For example, specialization of ‘pow()’ to a fixed expo-
nent speeds up the computation by a factor 2.16

As noted in Section 7.2, the most library functions are not pure, e.g. they may side-
effect the error-variable ‘errno’. However, by defining the ‘matherr()’ function, these
functions can be made pure, and hence suitable for specialization.

The idea is to add generating extensions for library functions, and allow partially
static calls to (some) externally defined functions. For example, suppose that a program
contains a call ‘pow(2.0,x)’ where ‘x’ is a dynamic variable. Normally, the call would
be suspended, but if a generating extension for ‘pow()’ is available, the call (and the
function) can be specialized.

Example 7.11 In C-Mix, a generating math-lib ‘libm-gen’ is part of the system. The
generating math-lib is linked to generating extensions as follows:

cc file-gen.c gen.c -lcmix -lm-gen

where libcmix is the C-Mix library. The binding-time analysis is informed about which
functions that are defined in ‘m-gen’. End of Example

The speedup obtained by specialization of the ecological simulation software ERSEM,
as described in Chapter 9, can to some extent be ascribed specialization of the power func-
tion. Notice that library functions only have to be binding-time analyzed and transformed
once.

7.6 Separate and incremental data-flow analysis

In this section we briefly consider separate and incremental pointer and data-flow analysis.
We have neither developed nor implemented separate or incremental pointer analysis.

7.6.1 Separate pointer analysis

Recall from Chapter 4 that the pointer analysis is a set-based analysis implemented via
constraint solving. It uses inclusion constraints of the form T1 ⊆ T2. The techniques
developed in Section 7.3 carries over to pointer analysis.

For each file, the constraint set is written into the module’s signature file. The global
solver reads in all signatures, sets up the global constraint system, and solves it using the

16On a Sun 4 using the Sun OS math library.

231

www.manaraa.com

algorithm from Chapter 4. The result is a symbol table that maps each identifier to its
abstraction.

Incremental pointer analysis can be developed following the lines of Section 7.4. In
this case, the map must represent inclusions such that for a variable T , B(T) = T where
T is the set of variables T1 where T1 ⊆ T .

7.7 Related work

Separate compilation is a pervasive concept in most modern programming languages and
a natural concept in almost all commercial compilers, but apparently little attention has
been paid to separate analysis. For example, the the Gnu C compiler compiles function
by function, and does not even perform any inter-procedural analyses [Stallman 1991].

Cooper et al. study the impact of inter-procedural analyses in modular languages
[Cooper et al. 1986a]. Burke describes the use of a global data base to record inter-
procedural facts about the modules being compiled [Burke 1993]. To our knowledge,
there exists no partial evaluators which incorporate separate analysis nor specialization.

Type inference in the presence of modules is now a mature concept — at least in the
case of functional languages. It therefore seems plausible that existing type-based binding-
time analyses should be extend-able into separate analyses. Henglein gave some initially
thought about this, but it has never been followed up nor implemented [Henglein 1991].

Consel and Jouvelot have studied separate binding-time analysis for a lambda calculus
based on effect inference [Consel and Jouvelot 1993]. Since their used lambda calculus
contains no global data structures or side-effects, their problem is somewhat simpler. An
efficient implementation of their analysis based on constraint solving would probably look
very like our algorithms.

Incremental analysis has mainly been studied in the framework of classical data-flow
problems. For example reaching definitions [Marlowe and Ryder 1990a], available ex-
pressions [Pollock and Soffa 1989] and live-variable analysis [Zadeck 1984]. Ramalingam
and Reps have developed an algorithm for incremental maintenance of dominator trees
[Ramalingam and Reps 1994]. The analyses have not yet been extended to complex lan-
guage featuring dynamic memory allocation, multi-level pointers or pointer arithmetic.

Freeman-Benson et al. have described an incremental constraint solver for linear con-
straints [Freeman et al. 1990]. Our constraint systems are simpler, and henceforth the
maintaining of a solution is easier.

Separate compilation and re-compilation most closely resembles separate program spe-
cialization. Olsson and Whitehead describe a simple tool which allows automatic re-
compilation of modular programs [Olsson and Whitehead 1989]. It is based on a global
dependency analysis which examines all modules, and generates a Makefile. Hood et al.
have developed a similar global interface analysis [Hood et al. 1986].

232

www.manaraa.com

7.8 Further work and conclusion

In this chapter we have studied separate program analysis and specialization. Two algo-
rithms for binding-time analysis of modules were developed. A separate analysis enables
binding-time analysis of modules, e.g. to accommodate modifications, and an incremental
constraint solver allows maintaining of a current solution without having to re-compute
it from scratch. We also discussed separate specialization of modules, and identified the
main problems.

7.8.1 Future work

The material in this chapter has not been implemented in the C-Mix system at the time
of writing. Problems with separate pointer analysis and data-flow analysis remain to be
solved.

The algorithms in this chapter do not support polyvariant analysis of programs. This
complicates separate analysis of library functions, where polyvariant binding time assign-
ment is critical. Extension to polyvariant analysis seems possible via an inter-modular
call-graph. However, the techniques used in previous work does not immediately carry
over. Recall that constraints over vectors were solved. The problem is that the length of
the vectors are unknown until solve-time.

A main motivation for separate specialization is to reduce the memory usage during
specialization. We have outlined a criteria for separate specialization of modules, but
this seems too restrictive for practical purposes. More liberal conditions are left to future
work.

7.8.2 Conclusion

We have completed the development on separate and incremental binding-time analysis,
and presented algorithms and outlined a possible implementation. We expect separate
analysis to have major practical importance. Program specialization still requires manual
engineering of programs, and the possibility to examine modules instead of complete
programs clearly is valuable.

The techniques so far are not sufficiently developed to accommodate separate special-
ization. In practice, residual programs easily become huge, and may exhaust the under-
lying compiler. We envision a program specialization environment which keeps track of
functions to be specialized, and allows the technology to be applied when feasible and not
when possible. In such an environment, the analyses developed in this chapter would be
central.

233

www.manaraa.com

Chapter 8

Speedup: Theory and Analysis

A partial evaluator is an automatic program optimization tool that has pragmatic success
when it yields efficient residual programs, but it is no panacea. Sometimes specialization
pays off well by the means of large speedups, other times it does not. In this chapter we
study speedup in partial evaluation from both a theoretical and a practical point of view.

A program optimizer is said to accomplish linear speedup if the optimized program at
most is a constant factor faster than the original program, for all input. It has for long
been suspected and accepted that partial evaluation based on constant folding, reduction
of dynamic expressions, specialization and unfolding, and transition compressing can do
no better than linear speedup, there the constant factor can depend on the static input,
but is independent of the dynamic input.

This gives an upper bound on the prospective speedup by specialization, e.g. there
is no hope that specialization of an exponential-time algorithm yields a polynomial-time
program. On the other hand, constants matter in practice. Even a modest speedup of
2 may have significance if the program runs for hours. We prove that partial evaluation
cannot accomplish super-linear speedup.

Faced with a program, it is usually hard to predict the outcome of specialization —
even after careful examination of the program’s structure. We have developed a simple,
but pragmatically successful speedup analysis that reports about prospective speedups,
given a binding-time annotated program. The analysis computes a speedup interval such
that the speedup obtained by specialization will belong to the interval.

The analysis works by computing relative speedup of loops, the objective being that
most computation time is spent in loops. Due to its simplicity, the analysis is fast and
hence feasible in practice. We present the analysis, prove its correctness, give some exper-
imental results, discuss shortcomings, and introduce some improvements. Furthermore,
we describe various applications of the analysis.

We also outline a technique that takes values of static variables into account. This
enables more accurate estimates of speedups.

This chapter is an extended version of the paper [Andersen and Gomard 1992] which
was joint work with Carsten Gomard. The chapter also owes to later work by Neil Jones
[Jones et al. 1993, Chapter 6].

234

www.manaraa.com

8.1 Introduction

During the last years partial evaluation has demonstrated its usefulness as an automatic
program specialization technique in numerous experiments. In many cases, specialization
has produced residual programs that are an order of magnitude faster. However, the same
experiments have revealed that partial evaluation is no panacea: sometimes specialization
gives little speedup, if any. A user without detailed knowledge of partial evaluation and
the underlying principles is usually unable to predict the outcome of a specialization,
without a time consuming manual inspection of residual programs.

In practice, the question “is specialization of this program worthwhile” most often be
answered by applying the partial evaluator and running of the residual program. Our
goal is to find a better way; in this chapter we study speedups in partial evaluation from
two viewpoints: we prove a theoretical limit for prospective speedups, and describe an
analysis that predicts speedups.

8.1.1 Prospective speedups

An informative answer to the above question is particularly desirable when partial eval-
uation is applied to computationally heavy problems. Clearly, it is wasteful to specialize
a program and let it run for hours just to realize that nothing was gained. This is worse
if the specialization itself is time consuming.

A “good” partial evaluator should ideally never slow down a program, but an upper
limit for the obtainable speedup seems likely due to the rather simple transformation a
partial evaluator performs. In particular, it does no “clever” transformations requiring
meta-reasoning about subject programs, or spectacular change of algorithms, e.g. replaces
a bubble-sort by a quick-sort. Other examples include replacing the naive recursive defi-
nition of the Fibonacci function by a linear iterative version.

An illuminating example is string matching where a pattern is searched for in a string.
If m is the length of the pattern and n the length of the string, a naive string matcher
possesses a runtime of O(m · n). For a fixed pattern, a Knuth, Morris and Pratt matcher
[Knuth et al. 1977] runs in time O(n). The catchy question is “can partial evaluation of
a naive string matcher to a fixed pattern give a KMP matcher”? It turns out that this is
not the case.

We prove that partial evaluation at most can accomplish linear speedup. This implies
that partial evaluation of a program with respect to some static input at most gives a
program that is a constant factor faster than the original subject program. This statement
contains three parts.

First, the speedup obtained by specialization depends on the static input. We pro-
vide some examples that show the dependency. Secondly, the speedup is independent of
dynamic input. Thirdly, super-linear speedup is impossible, that is, e.g. an exponential
runtime cannot be reduced to a polynomial runtime.

We formulate and prove the Speedup Theorem in a general setting that captures many
(imperative) programming languages.

235

www.manaraa.com

8.1.2 Predicting speedups

An estimate of the prospective speedup, available before the specialization, would be
valuable information. Then partial evaluation could be applied when feasible and not
only when possible as is often the case. On the basis of a speedup estimate, a user could
rewrite his program to improve the speedup, proceed with specialization if the speedup
estimate is satisfactory, and otherwise simply forget about it! It is logical to combine
speedup analysis with binding-time debuggers that allow inspection of binding times.

Another prospective is to let predicted speedup decide whether to perform an operation
at specialization time or to suspend it. For example, unrolling of loops that contribute
little speedup is undesirable due to increased code size, and should be avoided.1

Speedup estimation is clearly undecidable. We shall base our analysis on approxima-
tion of relative speedup and concentrate on loops, due to the fact that most computation
time is spend in loops.

We have a simple, but pragmatically successful speedup analysis which approximates
the speedup to be gained by an interval [l, h]. The interpretation is that for any static
input, the residual program will be between l and h times faster than the source program.
Since partial evaluation may result in infinite speedup, the upper bound may be infin-
ity. Consider for example a program containing a completely static loop with a bound
determined by the static input.

8.1.3 A reservation

To carry out analysis of speedups, we must make some simplifications. We shall assume
that a basic operation, e.g. the addition of two numbers takes a fixed time. While this in
general is true, it does not imply that the computation time of a “high-level” expression
can be found by summing up the computation time of the expression’s parts. Optimizing
compilers may change expensive computation into cheaper instructions, and may even
discard a useless expression.

We shall mainly ignore this aspect for the present. Practical experiments have shown
that the speedup analysis gives reasonable, — and useful — information despite these
simplifications. We return to an in-depth study of the interaction between specialization
and classical code optimization in Chapter 9.

8.1.4 Overview of chapter

The remainder of the chapter is organized as follows. In Section 8.2 we define measure-
ment of speedup and linear speedup, and prove that partial evaluation cannot accomplish
super-linear speedup. Section 8.3 develops an automatic speedup analysis that computes
a speedup interval on the basis of a binding-time annotated program. Section 8.4 de-
scribes an approach where the prospective speedup is computed during the execution of
generating extensions. Section 8.5 cites related work, and Section 8.7 holds the conclusion
and a list of further work.

1Technique: reclassify the loop as dynamic by the binding-time analysis or during specialization.

236

www.manaraa.com

8.2 Partial evaluation and linear speedups

We consider a program represented as a control-flow graph 〈S, E, s, e〉, where S is a
set of statement nodes, E a set of control-edges, and s, e unique start and exit nodes,
respectively. Languages with functions, e.g. the C language, fits into this framework, see
Chapter 2.2 To make statements about speedups, we must relate run times of subject
and specialized programs. This can be tricky since the subject program is a two-input
program whereas the residual program only inputs the dynamic data.3

8.2.1 Measuring execution times

A computation state 〈p,S〉 is a program point p and a store S mapping locations (vari-
ables) to values. If program execution passes control from a state 〈pi,Si〉 to a new state
〈pi+1,Si+1〉 it is written 〈pi,Si〉 → 〈pi+1,Si+1〉. A finite program execution is a sequence
of transition steps

〈pi,Si〉 → 〈pi+1,Si+1〉 → · · · → 〈pj,Sj〉
where i < j and pj is terminal. The program execution starts at the program point p0

corresponding to s, and a store S0 initialized with the program input. Notice that a single
statement or a basic block may constitute a program point — this is immaterial for the
exposition.

Each transition has a cost in terms of runtime. For example, if program point pi is
an expression statement followed by a ‘goto’ to program point pk, the cost is the cost
of the expression plus the control-flow jump. Thus, the runtime of a program applied to
some input can be approximated by the length of the transition sequence leading from
the initial program point to the final program point.

For a program p and input s, d we write |[[p]](s, d)| for the execution time. This means
that for given program and input s and d, the speedup obtained by partial evaluation is
given by

|[[p]](s, d)|
|[[ps]](d)|

where ps denotes p specialized with respect to d.

Example 8.1 Speedups are often given as the percentage improvement in execution time.
In this thesis we solely state speedups in the form defined here. End of Example

For some input s let |s| denote the size of s. We assume given an order on data such
that for a sequence of data si, |si| → ∞ is meaningful.

2In the following we assume ‘control-flow graph’ captures extended control-flow graphs.
3Without loss of generality we assume that subject programs take two inputs.

237

www.manaraa.com

8.2.2 Linear speedup

Clearly, for a fixed static input s, the actual exetution time that occurs when running the
specialized and subject programs depends on the dynamic input.

Definition 8.1 Let p be a two-input program, and s a static input.

1. Define the relative speedup by

SU s(d) =
|[[p]](s, d)|
|[[ps]](d)|

for all dynamic input d.

2. Define the speedup bound by

SB(s) = lim
|d|→∞

SU s(d)

for all static input s.

If specialization of program p with respect to static input s loops, define the speedup
SU s(d) = ∞ for all d. 2

The speedup bound is normally taken to be the “speedup obtained by specialization”.
The notion of linear speedup is defined in terms of the speedup bound [Jones 1989,

Jones 1990,Jones et al. 1993].

Definition 8.2 Partial evaluator ‘mix’ accomplishes linear speedup on program p if the
speedup bound SB(s) is finite for all s.4 2

Formulated differently, the definition requires that given a fixed static input s, there
shall exist an as ≥ 1 such that as · |[[ps]](d)| ≤ |[[p]](s, d)| for all but finitely many d.

Example 8.2 It is too strict to have as · |[[ps]](d)| < |[[p]](s, d)|. This would demand ‘mix’
to optimize an arbitrary program which we by no means require. To see this, take s to
be the “empty” input. End of Example

A largest speedup SU s does not always exist. Consider for an example a program
consisting of a single loop spending equally much time on static and dynamic computation,
and add a static statement outside the loop. Any as < 2 bounds SU s for all but finitely
many d, but not as = 2. Still, 2 seems the correct choice for the speedup, since the static
statement contributes little when the loop is iterated often enough.

8.2.3 Some examples

Some examples illustrate the relation between static input and speedups.

4It is here implicitly assumed that mix terminates.

238

www.manaraa.com

No static data

Intuitively, when no static data is present, no speedup can be expected. This need not be
true, however. If the program contains “static” data, e.g. in the form of statically defined
arrays, specialization may give a speedup. Clearly, the speedup is independent from the
dynamic input.

No dynamic data

Suppose that a program is specialized to all its input. The residual program then sim-
ply returns a constant. Obviously, the speedup is determined by the static input, and
independent of the “dynamic” input.

Additive run times

Assume for a program p, that |[[p]](s, d)| = f(|s|) + g(|d|). The speedup by specialization
of p is 1, since

SB(s) = lim
|d|→∞

SU s(d) =
f(|s|) + g(|d|)

c + g(|d|) = 1

cf. Definition 8.1.5 This calculation relies on that the program eventually spends more
time in dynamic computation that static computation. In practice, the static computation
may dominate, so specialization is worthwhile.

String matching

In Chapter 10 we show how a naive string matcher can be specialized to yield an efficient
KMP matcher by a slight change of the naive matcher. The speedup bound is given
by SB(s) = |m|, that is, the length of the pattern. Thus, the speedup is linear, but it
depends heavily on the static input.

8.2.4 No super-linear speedup!

Jones posed the following as an open question [Jones 1989]: “If ‘mix’ uses only the tech-
niques program point specialization, constant folding, transition compression/unfolding,
do there exist programs on which ‘mix’ accomplishes super-linear speedups?”. Equiv-
alently, do there exists programs such that the speedup bound of Definition 8.1 is not
finite.

Example 8.3 If ‘mix’ makes use of unsafe reductions, such as ‘e1, e2 ⇒ e2’, introduces
memorization, or eliminates common subexpressions, when it is easy to conceive exam-
ples of super-linear speedup. These reductions, however, may change the termination
properties of the subject programs. End of Example

5We assume that lim g(d) = ∞.

239

www.manaraa.com

We prove that partial evaluation restricted to program point and function special-
ization, constant folding, and transition compression/unfolding cannot accomplish super-
linear speedup. This is done by using the assumption that the partial evaluator terminates
to place a bound on the speedup. Hence, we provide a negative answer to the question of
Jones [Jones et al. 1993].

Without loss of generality we assume that every program point has a computation
cost of 1, i.e. is a “basic” statement”, and thus the run time of a program execution
amounts to the length of the transition 〈p0,S0〉 → · · · → 〈pn,Sn〉. Further, we assume
an annotation classifying every statement as static or dynamic with respect to the initial
division.

Theorem 8.1 (Speedup Theorem [Andersen and Gomard 1992,Jones et al. 1993]) Sup-
pose that ‘mix’ is a safe partial evaluator, and p a program. Assume that ‘mix’ terminates
for all static input s. Then ‘mix’ cannot accomplish super-linear speedup.

Proof Let d be some dynamic input and consider a standard execution [[p]](s, d):

〈p0,S0〉 → 〈p1,S1〉 → · · · → 〈pn,Sn〉
where we implicitly have assumed termination.6 The initial store S contains both the
static input s and the dynamic input d.

Each step in the computation involves computing the values Si+1 of the variables
and a new program point, e.g. due to execution of an if. Suppose that all statements
are “marked” with their binding times (even though we consider a standard execution).
Consider what a partial evaluation would have done along the path 〈p0,S0〉 → · · · →
〈pn,Sn〉.

Expressions marked static would be evaluated during specialization (= constant fold-
ing), and static control-flow statements would have been executed (= transition compres-
sion). In the case of a dynamic expression, some code would be generated (= reduction),
and a residual jump would be generated in the case of a dynamic control-flow statement
(= specialization). Beware, by specialization more than static evaluations/executions in
the computation path above would in general be performed. Recall that we consider a
standard execution and imagine what would have been done during specialization.

As usual, those computations done during specialization are called static, and those
that are postponed to runtime are called dynamic. To calculate the speedup for this
particular choice of s, d, simply sum up the costs of static and dynamic computation
along the transition sequence above. If ts is the cost of the static computations and
similarly for td, we have

SU s(d) =
ts + td

td

where s, d are fixed.7

6If neither the original nor the residual program terminates the theorem is trivially fulfilled.
7We assume wlog. that a least one dynamic computation is carried out.

240

www.manaraa.com

Assume that ‘mix’ (the specializer or the generating extension) terminates in K steps.
This means that if ‘mix’ is applied to program p on static input s, there will be at most
K − 1 steps in the transition sequence above without any intervening code generation,
since at each step ‘mix’ either executes a statement, or generates code for a residual
statement, and ‘mix’ is no faster than standard execution.

Thus, for every dynamic statement, there are at most K−1 static statements, implying
ts ≤ (K − 1) · td. This gives us

SU s(d) =
ts + td

td
≤ (K − 1)td + td

td
≤ K

where K is independent of d. 2

Notice that ‘mix’ always generates at least one residual statement; at least a ‘return
value’. The estimate K above is far larger than the speedup that can be expected in
practice, but the argument shows the speedup to be bounded.

8.3 Predicting speedups

An estimate of the prospective speedup, available before the residual program is run,
would be valuable information. On the basis of a speedup approximation, a user can decide
whether specialization is worthwhile or some binding-time improvements are necessary
for a satisfactory result. This is especially important in the case of computational heavy
problems as for example scientific computation [Berlin and Weise 1990].

Speedup estimation can be performed at three different stages, listed in order of avail-
able information:

1. By (time) analysis of the residual program; an extreme is to apply the original and
the specialized programs to the dynamic input and measure their execution times.

2. By analysis of the subject program given its static input.

3. By analysis of the subject program given only a binding time division of the vari-
ables.

Clearly, the first approach gives the best results but also requires the most information.
Further, it gives only one observed value of the speedup, and it is not obvious how to
relate an empirical speedup with for instance binding time annotations. The second
approach is advantageous over the third procedure since it can exploit the exact value of
static variables. The third way is the most general due to the absence of both static and
dynamic data, and thus the least precise. Nonetheless, useful results can be obtained, as
we will see.

We present a speedup analysis based on the third approach, and study ways to im-
plement the second. Input to the speedup analysis is a binding-time annotated program,
and output is a speedup interval [l, h], such that the actual speedup will be at least l and
at most h, where h may be ∞.

241

www.manaraa.com

8.3.1 Safety of speedup intervals

A speedup interval I ⊆ {x ∈ IR | x ≥ 1} ∪ {∞} = IR∞ for a program p captures the
possible speedup SU s(d) for all s and d in a sense to be made precise below.8

A speedup interval [l, h] is safe for p if the speedup SU s(d) converges to an element in
the interval when s, d both grow such that |[[p]](s, d)| → ∞. In general, the speedup will
not converge to a fixed x as |[[p]](s, d)| → ∞, but we shall require that if program runs
“long enough” it shall exhibit a speedup arbitrarily close to the interval.

Definition 8.3 (Safety of speedup interval) A speedup interval [l, h] is safe for p if for
all sequences si, di where |[[p]](si, di)| → ∞

∀ε > 0 : ∃k : ∀j > k : SU sj
(dj) =

|[[p]](sj, dj)|
|[[psj

]](dj)| ∈ [l − ε, h + ε]

2

Consider again the scenario from Section 8.2.2 where a loop contains equally much
static and dynamic computation, and assume that the speedup is independent of the
choice of s. Then a safe (and precise) speedup interval is [2,2].

8.3.2 Simple loops and relative speedup

We consider programs represented as control-flow graphs. For the present we do not make
precise whether cycles, that is, loops in the program, include function calls. We return to
this in Section 8.3.6 below.

A loop in a control-flow graph 〈S, E, s, e〉 is a sequence of nodes ni ∈ S:

n1 → n2 → · · · → nk, k ∈ IN

where each (ni, ni+1) is an edge and n1 = nk. A simple loop is a loop n1 → · · · → nk,
k > 1, where ni 6= nj for all 1 ≤ i < j ≤ k.

Let for each statement the cost C(ni) be the execution cost of ni. For example, C(ni)
can be the number of machine instructions implementing ni, or the number of machine
cycles necessary to execute ni. We discuss the definition of the cost function in greater
detail in Section 8.6.1. For notational convenience we define Cs(ni) to be the cost C(ni) of
ni if the statement is static and 0 otherwise, and similarly for Cd. Thus, given a sequence
of statements n1, . . . , nk, the cost of the static statements is denoted by

∑
i∈[1,k] Cs(ni).

Definition 8.4 (Relative Speedup in loop) Let l = n1 → · · · → nk be a loop. The
relative speedup SU rel(l) of l is then defined by:

SU rel(l) =
{ Cs(l)+Cd(l)

Cd(l)
if Cd(l) 6= 0

∞ otherwise

where Cs(l) =
∑

i∈[1,k−1] Cs(ni) and Cd(l) =
∑

i∈[1,k−1] Cd(ni). 2

The relative speedup of a loop is a number in IR∞, and is independent of the values of
variables.

8For addition involving ∞ we use x +∞ = ∞+ x = ∞ for all x ∈ IR∞.

242

www.manaraa.com

8.3.3 Doing speedup analysis

Given a program 〈S, E, s, e〉 is easy to find the set L of simple loops [Aho et al. 1986].
In practice it may be more convenient to compute the set of natural loops. The basic
idea behind the analysis is that the relative speedup of a program p is determined by the
relative speedup of loops when the program is run for sufficiently long time.

Algorithm 8.1 Speedup analysis.

1. For all simple loops l ∈ L compute the relative speedup SU rel(l).

2. The relative speedup interval is [minSU rel(l), maxSU rel(l)], l ∈ C.

2

The speedup analysis does not take basic blocks (statements) outside loops into ac-
count. Clearly, the speedup of the loops will dominate the speedup of the whole program
provided the execution time is large. However, the analysis can easily be modified to han-
dle the remaining basic blocks by accumulating relative speedups for all paths through the
program without loops. Without the revision, the analysis will have nothing meaningful
to say about programs without loops.

Example 8.4 Consider the following contrived program which implements addition.

int add(int m, int n)
{

int sum;
/* 1 */ sum = n
/* 2 */ while (m) {
/* 3 */ sum += 1;
/* 4 */ m -= 1;
/* 5 */ }
/* 6 */ return sum;

}

The basic blocks are: {1}, {2, 3, 4, 5}, {6} where the second constitute a (simple) loop.
Suppose that m is static but n dynamic. Then the statements 2, 4 and 5 are static and
the rest dynamic. Letting the cost of statements be 1 “unit”, we have the relative speedup
of the loops is 4. The relative speedup interval is [4, 4]. End of Example

To see that the speedups for all non-simple loops are in the computed speedup interval,
let us see that if [u, v] is safe for loops l1 and l2 then it is also safe for a loop l composed
from l1 and l2.

Lemma 8.1 Let l1 and l2 be simple loops in a program p with a common start node, and
assume that [u, v] is safe for both l1 and l2. Then [u, v] is safe for the loop l of any number
of repetitions from l1 and l2.

243

www.manaraa.com

Proof Assume wlog. that SU rel(l1) 6= ∞ and SU rel(l2) 6= ∞, and l1 executes m times
and l2 executes n times.

SU rel(l) =
Cs(l) + Cd(l)

Cd(l)

=
mCs(l1) + nCs(l2) + mCd(l1) + nCd(l2)

mCd(l1) + nCd(l2)

=
(mCs(l1)+mCd(l1)

mCd(l1)
)

(mCd(l1)+nCd(l2)
mCd(l1)

)
+

(nCs(l2)+nCd(l2)
nCd(l2)

)

(mCd(l1)+nCd(l2)
nCd(l2)

)

=
SU rel(l1)

(mCd(l1)+nCd(l2)
mCd(l1)

)
+

SU rel(l2)

(mCd(l1)+nCd(l2)
nCd(l2)

)

Suppose SU rel(l1) ≤ SU rel(l2):

SU rel(l) = SUrel(l1)

(
mCd(l1)+nCd(l2)

mCd(l1)
)
+ SUrel(l2)

(
mCd(l1)+nCd(l2)

nCd(l2)
)

≥ SUrel(l1)

(
mCd(l1)+mCd(l2)

mCd(l1)
)
+ SUrel(l1)

(
mCd(l1)+nCd(l2)

nCd(l2)
)

= SU rel(l1)

and similarly for SU rel(l2). Thus, we have

SU rel(l1) ≤ SU rel(l) ≤ SU rel(l2)

and therefore [u, v] is safe for l. 2

Theorem 8.2 (Safety of speedup analysis) Assume the analysis computes a speedup in-
terval [u, v] for program p. Then [u, v] is safe for p.

Proof An upper bound v = ∞ is trivially safe, so assume v 6= ∞.
Consider the sequence of nodes ni visited during a terminating computation [[p]](s, d)

arising from the application of p to data s,d:

N = n1 → n2 → · · · → nk

where a node ni may occur several times in N .
To delete a simple loop ni → · · · → nj, i > j from N is to replace N by:

n1 → · · · → ni−1 → nj+1 → · · · → nk

Delete as many simple loops as possible from N , and denote the set of remaining loops by
L. By definition, the remaining nodes in N occur only once, and the size of the program
|N | provides a bound on the number of non-loop nodes. Denote this set by NL.

For the given program p and data s, d we calculate the speedup:

244

www.manaraa.com

SU =
Cs(L) + Cs(NL) + Cd(L) + Cd(NL)

Cd(L) + Cd(NL)

which can be rewritten to

SU =

Cs(L)+Cd(L)
Cd(L)

Cd(L)+Cd(NL)
Cd(L)

+

Cs(NL)+Cd(NL)
Cd(NL)

Cd(L)+Cd(NL)
Cd(NL)

Now we will argue that for all ε > 0 there exists a K such that SU s(d) ∈ [u− ε, v + ε] for
if |[[p]](s, d)| > K. For some s choose a sequence s, di such that |[[p]](s, di)| → ∞.

To the right of the + we have that the numerator Cs(NL)+Cd(NL)
Cd(NL)

is uniformly bounded,

and that the denumerator converges to ∞ since Cd(L) →∞.
To the left of the + we have that the denominator converges to 1. Thus, we conclude

SU → Cs(L) + Cd(L)

Cd(L)

when |[[p]](s, di)| → ∞.
Since L is a multi-set of simple loops, we conclude that [u, v] is safe for p, using

Lemma 8.1. 2

Notice that the choice of a sequence s, di for which |[[p]](s, di)| → ∞ rules out com-
pletely static loops, i.e. specialization of the program is assumed to terminate.

8.3.4 Experiments

We have implemented the speedup analysis and examined its behavior on a number of
examples. The implemented version solely considers loops, and has a differentiated cost
function for statements and expressions. The analysis is fast; there is no significant
analysis time for the examples here. All experiments have been conducted on a Sun
SparcStation I, and times measured via the Unix ‘time’ command (user seconds). The
programs ‘polish-int’ and ‘scanner’ originate from Pagan’s book [Pagan 1990].

The ‘add’ program is listed in Example 8.4. The program ‘polish-int’ implements
an interpreter for a simple post-fix language. In this example, the static input was a
specification which computes the first n primes. The dynamic input was n = 500. The
program ‘scanner’ is a general lexical analysis that inputs a token specification and a
stream of characters. It was specialized to a specification of 8 different tokens which
appeared 30,000 times in the input stream.

Example Run-time Speedup
Original Specialized Measured Estimated

add 12.2 4.6 2.7 [2.7, 2.7]
scanner 1.5 0.9 1.7 [1.5, 4.1]
polish-int 59.1 8.7 6.8 [5.1,∞]

245

www.manaraa.com

For the add program the speedup factor is independent of the dynamic input, and
converges to 2.7 as the static input grows. Hence the very tight interval.

The interval for the ‘scanner’ is quite satisfactory. If a specification of unambiguous
tokens given, very little can be done at mix -time, and thus the speedup is close to the
lower bound (as in the example). On the other hand, if the supplied table contains many
“fail and backtrack” actions, the upper bound can be approached (not shown).

The upper bound for ‘polish-int’ is correctly∞ as the interpreter’s code for handling
unconditional jumps is completely static:

while (program[pp] != HALT)
switch (program[pp])

{
case ...
case JUMP: pp = program[pp+1]; break;
case ...
}

Thus, an unbounded high speedup can be obtained by specialization with respect to a
program with “sufficiently” many unconditional, consecutive jumps. To justify that the
seemingly non-tight speedup interval computed by the analysis is indeed reasonable, we
applied the “polish-form” interpreter to three different programs, i.e. three different static
inputs. Each program exploits different parts of the interpreter.

The ‘primes’ program computes the first n primes. The ‘add’ program is the equivalent
to the function ‘add’ in Example 8.4. The ‘jump’ program consists of a single loop with
ten unconditional jumps. The measured speedups are as follows.

Example Run-time Speedup
Original Specialized Measured

primes 59.1 8.7 6.8
add 51.5 5.5 9.2
jump 60.7 3.0 20.3

These experiments clearly demonstrate that the actual speedup does depend on the
static input, as previously claimed.

8.3.5 Limitations and improvements

Even though the speedup analysis has demonstrated pragmatic success above, it has its
limitations and suffers from some significant drawbacks. We have found that the lower
bound computed by the analysis usually provides a fairly good estimate, but it is easy to
construct examples which fool the analysis.

Loops are not related

Consider for example the program fragments below.

for (n = N; n; n--) for (n = N; n; n--) S1;
{ S1; S2; } for (n = N; n; n--) S2;

246

www.manaraa.com

Suppose that S1 (static) and S2 (dynamic) do not interfere, meaning the two programs
have the same observable effect. For the program to the left, the estimated speedup
interval is [4, 4] (counting 1 for all kinds of statements). The corresponding interval for
the program to the right is [3,∞], where ∞ is due to the completely static loop. The
latter result is still safe but certainly less tight — and useful — than the former.

The problem is that loops are considered in isolation, and the analysis therefore fails
to recognize that the two loops iterate the same number of times.

Approximating the number of loop iterations

The analysis often errs conservatively but correctly, and reports infinite speedup due to
static loops in the subject program. However, in many cases a loop bound is either present
in the program, as in

for (n = 0; n < 100; n++) . . .

or can be computed. This could be used to enhance the accuracy of the analysis since
bounded static loops could be left out of the speedup computation, or added as the
speedup, in the case of no residual loops.

Generalized constant folding analysis [Harrison 1977,Hendren et al. 1993] may be ap-
plied for approximation of a loop’s iteration space. We have not, however, investigated
this further.

Relating loops

As exemplified above, a major shortcoming in the analysis is that all loops are treated as
being completely unrelated. Another blemish in the method is that all loops contribute
equally to the final approximation of the speedup. For example, in a program with two
loops, the one iterated 2 times, speedup 2, the other iterated 1000 times, speedup 10,
the actual speedup is clearly close to 10. The speedup analysis would report the safe but
loose speedup interval [2, 10]. Methods for approximating the number of loop iterations
could alleviate the problem.

8.3.6 Variations of speedup analysis

So far we have assumed that a global speedup is computed by the analysis. However,
several variations of the analysis may be useful.

When partial evaluation is applied to huge programs, it may be valuable to have
a speedup estimate for each function, or a collection of functions. On the basis of a
function speedup interval, specialization can be applied to functions that contributes with
a significant speedup, and functions with a low speedup can be binding-time engineered
or left out of consideration. Combined with a frequency or execution time analysis,
e.g. as computed by the Unix command ‘prof’, the time spend on experiments with
specialization could be lowered.

The analysis can easily be extended to support this. The only change needed is that
only intra-procedural loops are collected, and call expressions are given appropriate costs.

247

www.manaraa.com

Depending on the programs, the result of the analysis may be more coarse since recursion
is left out of the speedup approximation. On the other hand, it can be avoided that
completely static functions distort the result of the global analysis.

As a final example, we consider use of speedup estimates for determining feasibility of
loop unrolling. Suppose given a loop

for (n = 0; n < 1000; n++) S

where S is a dynamic statement. Clearly, it is undesirable to unroll the loop above due to
code duplication. In general, it impossible to say when a static loop should be unrolled.
A reasonable strategy seems to be that loops only shall be unrolled if the speedup of the
body if beyond a certain lower limit. In particular, a loop with a speedup of 1 should
never be unrolled.

8.4 Predicting speedups in generating extensions

In the previous section we developed an analysis that estimates a speedup before the value
of static variables are available. An advantage is that the analysis time is independent of
both the static and dynamic variables, but the analysis err conservatively since it must
account for all static values. In this section we outline an approach where the speedup is
computed during specialization. More concretely, we shall assume that specialization is
accomplished via execution of generating extensions.

8.4.1 Accounting for static values

The aim is, given a program p and static input s, to compute a speedup valid for all
dynamic input d. When the actual values of static variables are available the problem
with unbounded static loops can be aboided. A drawback is that the execution time of
the analysis depends on the specialization time, but in our experience specialization is
normally so fast that actually generating a residual program to obtain a speedup estimate
is no obstacle in practice.

Even though unbounded speedup becomes impossible — unbounded speedup mani-
fests itself by non-termination — a precise speedup cannot be computed. The residual
program may (dynamically) choose between branches with different speedups. We de-
scribe an approach where “profiling” information is inserted into generating extensions.

8.4.2 Speedup analysis in generating extensions

When a generating extension is run, the number of a times a static loop is iterated can
be counted. Unrolling of a loop gives straight line code in the residual program with
a speedup that will diminish when residual loops are iterated sufficient many times, so
static loops can be left out of the speedup computation. Beware, static loops may be
unrolled inside dynamic loops.

We extend a generating function with a counter for every dynamic loop: a count for
number of static statements executed, and a count representing the number of residual

248

www.manaraa.com

statements generated. When specialization of a dynamic loop has completed, the counters
can be employed to calculate the speedup of the (residual) loop.

Similar to the analysis of the previous section, the analysis result is given as the
smallest interval that includes the speedups of all loops. We have not experimented with
this analysis in practice but we expect it to give reasonable results.

8.5 Related work

It has for long been suspected that partial evaluation at must can accomplish linear
speedup, but it has apparently never been proved nor published before. Yuri Gurevich
has, however, independently come up with a similar reasoning. To our knowledge this is
a first attempt at automatic estimation of speedup in partial evaluation.

8.5.1 Speedup in partial evaluation

Amtoft [Hansen 1991] proves in the setting of logic programming that fold/unfold trans-
formations at most can give rise to linear speedup. The same restrictions as imposed
upon ‘mix’ are assumed. Note, however, that unification is daringly assumed to run in
constant time, which may not be completely in accordance with reality.

As proved in this chapter, partial evaluation can only give constant speedups, and
is thus uninteresting from a classical complexity theory point of view.9 Recently, Jones
has shown that constant factors actually do add computation power to small impera-
tive languages [Jones 1993]. It remain to be investigated whether the constant speedups
encountered by program transformation can be employed to classify the strength of trans-
formers. The answer appears to be negative since partial evaluation extended with positive
context propagation strictly increases the power of possible transformations, but positive
context propagation is believed to give linear speedups.

8.5.2 Speedup analysis versus complexity analysis

Automatic complexity analysis has received some attention during the last years. The
aim is: given a program p and possibly some “size” descriptions of the input, to compute
a worst-case complexity function Op(·) in terms of the input size n.

It is tempting to apply techniques from automatic complexity analysis to speedup
estimation. However, as the following example illustrate, the linear speedup in partial
evaluation does not fit well into ordinary complexity analysis. Consider a loop

for (; n; n--) { S1; S2; . . . Sj; }

Assume the relative speedup obtained by specialization of the statement sequence S1;

. . . Sj; to be k. Then the relative speedup of the whole program will be approximately k
regardless of the loop being static or dynamic. However, if the loop is static, complexity
analysis of the residual program will produce the answer O(1), since the loop has been

9This should not be taken as constants do not matter in practice!

249

www.manaraa.com

unrolled. If the loop is dynamic, the result will be O(n). Not much insight (about
speedup, that is) is gained this way.

It is, however, most likely that the techniques from automatic complexity analysis can
be adapted to aid the problem of speedup analysis.

8.5.3 Properties of optimized programs

Malmkjær has developed an analysis that can predict the form of residual programs
[Malmkjær 1992]. The output of the analysis is a grammar which indicates the structure
of specialized programs. The analysis has nothing to say about speedups.

Inlining or unfolding is part of both compilation and partial evaluation, and its ef-
fect on execution times has been studied. Davidson and Holler have applied a C func-
tion inliner to a number of test programs and measured its effect on execution times
[Davidson and Holler 1988,Davidson and Holler 1992]. Notice that this is pure empirical
results; no prospective savings due to inlining are estimated. Ball describes an analysis
that estimates the effect of function inlining [Ball 1979]. The analysis relies, however, on
call statistics, and is therefore not feasible for programs that exhibit long execution times.

8.6 Future work

There are several possible directions for continuation of the preliminary results presented
in this chapter. We believe that automatic speedup estimation is an emerging field which
will become even more important when partial evaluation is used by non-experts.

8.6.1 Costs of instructions

In Section 8.3 we use a simple statement cost assigning 1 to every statement. It is trivial
to refine the function to picture the cost of various expressions. However, an assign-
ment based on high-level syntax is not accurate, and may be influenced by optimizations.
Consider each in turn.

In C, the same operation can often be expressed in several different ways. Consider
for an example ‘n--’ versus ‘n = n - 1’. Seemingly, it is reasonably to assign a larger
total cost to the latter expression than the former. On the other hand, must compilers
will generate as efficient machine code for the latter as the former, so in practice the cost
of the expressions is comparable.

It is well-known that specialization of a program may enable optimization which oth-
erwise were not possible, e.g. unrolling of a loop resulting in a large basic blocks. However,
optimizations may have unexpected effects on speedups. Consider the loop below,

for (n = 0; n <= N; n++)
{ S1; S2 }

where specialization will result in the straight line code ‘S10;S20;. . . ;S1N;S2N ’.

250

www.manaraa.com

Suppose that ‘S1’ is loop invariant. In the original program, it will then be moved
outside the loop, and executed only once. However, in the specialized program, it will be
executed N times. Apparently, partial evaluation degrades efficiency.10

We leave it to future work to investigate the relation between speedups and optimiza-
tions of both subject and residual programs. Some preliminary study is undertaken in
Chapter 9.

8.6.2 Estimation of code size

Run times are often used as the key measurement for judging the success of automatic
transformations and optimizations. However, in the case of realistic programs, the code
size matters. Very large programs may result in unexpected loss of performance due to
register allocation pressure, an increased number of cache fails, or considerable longer
compilation times.

The size of a residual program is broadly speaking determined by two factors: the
unrolling of static loops, and inlining (or unfolding) of functions and statements.11 In-
tuitively, a linear relation between code size and speedup seems reasonably: the gain in
efficiency has a price; but super-linear code size blowup should be prevented.

For many programs, however, there is no obvious relation between code size and
speedup, making automation of generalization with respect to code impossible. A class of
programs, the so-called oblivious algorithms [Jones et al. 1993, Chapter 13] exhibits good
behaviour: they contain no test on dynamic data, and hence the code size grows linearly
with the static input. However, there seems no obvious way to transform a non-oblivious
program into a more “well-behaved” program.

8.6.3 Unsafe optimizations and super-linear speedup

The Speedup Theorem in Section 8.2 assumes that ‘mix’ only performs safe reductions.
For example, partial evaluation is not allowed to throw away possibly non-terminating ex-
pressions. However, in some cases it can be recognized, either automatically or manually,
that it is safe to discard an expression, or perform other “unsafe” reductions. Moreover,
it seems natural to let a partial evaluator share computation in a residual program when
it can detect it safe to do so. The causes and effects between unsafe reductions and
super-linear speedup remain to be investigated.

8.7 Conclusion

We have investigated speedup in partial evaluation. It was proved that if mix is based
on the techniques: function specialization, function unfolding/transition compression and
constant folding, super-linear speedup is impossible.

10See also Chapter 9.
11An example of the latter: specialization of a dynamic if causes the following statements to be inlined

into the branches.

251

www.manaraa.com

A simple, but useful speedup analysis has been developed and implemented. The anal-
ysis computes a speedup interval by estimating the relative speedup of simple loops, given
a binding-time annotated program. It was shown that an interval is a safe approximation
of the actual speedup. Further, we outlined how speedup estimation can be accomplished
during execution of generating extension, yielding in tighter speedup intervals. We de-
scribed some experiments which showed reasonable results, but we also pointed out that
the analysis can fail miserably on some programs. We believe a speedup estimate is a valu-
able information for users of a partial evaluator systems, and hence, further investigation
of this field should be undertaken.

252

www.manaraa.com

Chapter 9

Partial Evaluation in Practice

The aim of program specialization is efficiency. An application of a partial evaluator is
successful if the residual program is faster than the subject program. Furthermore, the
system itself should preferably be efficient.

In the previous chapters we have seen several examples where partial evaluation appar-
ently pays off. In practice, however, many unexpected aspects may influence the actual
speedup. There is only one way to assess the usefulness of the technique: by applying it to
realistic examples. We have implemented a prototype version of the system developed in
this thesis. The system implements most of the described techniques, and has generated
the examples reproduced in this chapter.

Like traditional optimization techniques, partial evaluation must in the average pro-
duce more efficient programs. In particular, residual programs less efficient than subject
programs should never be generated. It is normally believed that specialization enables
greater classical optimization, often substantiated by the large basic blocks partial evalu-
ation tends to generate. Thus, even when specialization in itself does not give significant
speedups, enabled optimizations may contribute to give an overall good result. We in-
vestigate the relation between specialization and optimization, and find some astonishing
connections. In particular, we observe that partial evaluation may both disable some
optimizations and degrade the performance of programs. This leads to a discussion about
the order in which program optimizations should be applied.

It is well-known that partial evaluators are sensitive to changes in subject programs.
A slight modification may make the difference between good and insignificant speedups.
Furthermore, some programs are more amenable for specialization than others. We pro-
vide an example where specialization of two similar algorithms gives very different results.

This chapter is organized as follows. In Chapter 9.1 we provide an overview of the
implementation and its status. Chapter 9.2 is concerned with the relationship between
size and speedup from a practical point of view. In chapter 9.3 we describe some intriguing
interferences between specialization and optimization. Several experiments are reported
in Chapter 9.4. Finally, Chapter 9.5 holds the conclusion and lists topics for further work.

253

www.manaraa.com

9.1 C-Mix: a partial evaluator for C

We have made a prototype implementation of the partial evaluator C-Mix described in
this thesis. It is implemented in C++, and generates programs in C. Currently, the
implementation consists of approximately 20,000 lines of code.

9.1.1 Overview

An overview of the system is provided by Figure 4. A parser builds an abstract syntax tree
representing the subject program. During the parsing, type checking and type annotation
are performed, and various attributes are initialized. Further, types are separated and a
value-flow analysis is carried out.

Several program analyses are applied in succession: static-call graph analysis (Chap-
ter 2), pointer analysis (Chapter 4), side-effect analysis (Chapter 6) and binding-time
analysis (Chapter 5). The speedup analysis (Chapter 8) has been implemented in a previ-
ous version of C-Mix, and the in-use analysis has not been implemented.1 The generating
extension generator (Chapter 3) converts the binding-time annotated program into a C++
program. An annotated version of the subject program can be inspected in a separate
window.

At the time of writing we have not implemented the separate binding-time analysis
nor the incremental constraint-solver developed in Chapter 7.

9.1.2 C-Mix in practice

A typical session with C-Mix is shown in Figure 66. We specialize the binary search
function which is used as an example in the following section. At the time of writing
we have implemented a coarse beautifier which converts ugly residual programs into less
ugly residual programs. The specialized program in this chapter are listed as generated
by C-Mix. Notice that “beautifying” does not improve efficiency, only readability!

9.2 Speed versus size

The underlying principle in partial evaluation is specialization of program points to values.
As a consequence, algorithms that are dependent on static input data but independent of
dynamic input data specialize “well”.

9.2.1 Data-dependent algorithms

Intuitively, partial evaluation yields good speedups on programs where many control-
flow branches can be determined statically, and some function calls can be replaced by
constants. Programs containing many control-flow decisions dependent on dynamic data

1The figure is not telling the whole truth!

254

www.manaraa.com

Generation of generating extension:
$ cmix -bDD -m bsearch -o bsearch-gen.cc bsearch.c
An annotated version of the program can be inspected in an X11 window.
Compiling and linking:
$ g++ bsearch-gen.cc main-gen.cc -lcmix -o bsearch-gen
The ‘ main-gen.cc’ file contains a ‘ main()’
function that calls the generating extension with the static input.
The object files are linked with the C-Mix library.
Specialization:
$./bsearch-gen > bsearch-spec.c
The result is a C program.
Compilation and linking:
$ gcc bsearch-spec.c main.c -o bsearch-spec
The original ‘ main()’ function must be changed according to the changed type of ‘ bsearch()’.
Execution:
$ time ./bsearch-spec
23.796u 0.059s 0:24.88 97.0% 0+184k 0+0io 0pf+0w

Figure 66: A session with C-Mix

are less suitable for specialization since both branches of dynamic if’s are specialized,
potentially leading to residual programs of exponential size.

Example 9.1 The tests of the loops in the matrix multiplication function below are
data-independent of the matrices ‘a’, ‘b’ and ‘c’.

/* matrix mult: multiply matrices a and b, result in c */
void matrix_mult(int m, int n, int *a, int *b, int *c)
{

int i, j, k;
for (i = 0; i < m; i++)

for (j = 0; j < n; j++)
for (c[i*m+j] = k = 0; k < n; k++)

c[i*m + j] += a[i*m + k] + b[k*m + j];
}

Specialization with respect to static ‘m’ and ‘n’ will unroll the loops and produce straight
line code. End of Example

An algorithm where the control-flow does not depend on dynamic input is called
oblivious [Jones et al. 1993, Chapter 13]. Specialization of an oblivious algorithm results
in straight line code of size polynomial with respect to the input. The matrix multi-
plication in Example 9.1 is oblivious. Huge basic blocks usually enable classical local
data-flow optimizations, e.g. elimination of common subexpression and partial redun-
dancies [Aho et al. 1986], and may also give better exploitation of pipelined computers
[Berlin and Weise 1990]. Due to the fast development of larger computers, code size is
often given less priority than speed.2 In the next section, however, we argue that huge
basic blocks is not always a good thing.

2If your program can run; buy some more memory!

255

www.manaraa.com

/* bsearch: return entry of key in table[1000] */
int bsearch(int key, int *table)
{

int low = 0, high = 1000 - 1, mid;
while (low <= high) {

mid = (low + high) / 2;
if (table[mid] < key)

low = mid + 1;
else if (table[mid] > key)

high = mid - 1;
else

return mid;
}
return -1;

}

Figure 67: Binary search function: variant 1

Clearly, most programs are not oblivious (but are likely to contain oblivious parts).
Specialization of non-oblivious algorithms may result in residual program of exponential
size (compared to the subject programs). Suppose, for an example, a program contains
calls to a function f in both branches of a dynamic if. In the residual program, two
(specialized) versions of f appear will if the static parametes differ. The residual pro-
gram is probably more efficient than the subject program, but the code size may render
specialization infeasible.

Algorithms fulfilling that the set of values bound to static variables are independent
of dynamic input are called weakly oblivious [Jones et al. 1993, Chapter 13]. A desirable
property of weakly oblivious algorithms is that specialization to static input s will termi-
nate, provided normal execution terminates on s and some dynamic input. The reason
is that the dynamic input does not influence the values assigned to static variables. Spe-
cialization of non-oblivious programs may loop since all static values must be accounted
for.

Example 9.2 The binary search function in Figure 67 is non-oblivious when ‘table’ is
classified dynamic, since the tests depends on ‘table’. End of Example

9.2.2 Case study: binary search

Let us consider specialization of binary search functions. Figure 67 shows the “classical”
binary search function, and Figure 68 depicts a variant [Bentley 1984]. Ignore for now the
C-Mix specifier ‘residual’. Specialization with respect to “no” static input may seem
useless, but notice that the table size (1000) is “hard-coded” into the programs. Thus,
some static “input” is presence in the functions.

A remark. The function ‘bsearch2’ was presented by Bentley as an example of man-
ual code tuning. By hand he derived the residual program we generate automatically
[Bentley 1984].

256

www.manaraa.com

/* bseach2: return entry of key in table[1000] */
int bsearch2(int key, int *table)
{

int mid = 512;
#ifdef CMIX

residual
#endif

int left = -1;
if (table[511] < key) left = 1000 - 512;
while (mid != 1) {

mid = mid / 2;
if (table[left + mid] < key) left += mid;

}
if ((left + 1) >= 1000 || table[left+1] != key) return -1;
else return left + 1;

}

Figure 68: Binary search function: variant 2

Specialization of the ‘bsearch1()’ function to a dynamic key and table, yields a
residual program with the following appearance.3

/* This program was generated automatically */
int binsearch_1 (int v1, int *(v2))
{

if (((v2)[499]) < (v1)) {
if (((v2)[749]) < (v1)) {

if (((v2)[874]) < (v1)) {
if (((v2)[937]) < (v1)) {

if (((v2)[968]) < (v1)) {
if (((v2)[984]) < (v1)) {

if (((v2)[992]) < (v1)) {
if (((v2)[996]) < (v1)) {

if (((v2)[998]) < (v1)) {
if (((v2)[999]) < (v1)) {

return -1;
} else {

if (((v2)[999]) > (v1)) {
return -1;

} else {
return 999;

}
}

} else {
if (((v2)[998]) > (v1)) {

if (((v2)[997]) < (v1)) {
return -1;

}
...

3Programs are shown as generated by C-Mix.

257

www.manaraa.com

The loop has been unrolled and the dynamic if specialized. Even though faster, this
program is not especially admirable: it is huge, more than 10,000 lines. Consider now the
variant of binary search shown in Figure 68. Part of the residual program is shown below.

/* This program was generated automatically */
int bsearch_1 (int v1, int *(v2))
{

if (((v2)[511]) < (v1)) {
if (((v2)[744]) < (v1)) {

if (((v2)[872]) < (v1)) {
if (((v2)[936]) < (v1)) {

if (((v2)[968]) < (v1)) {
if (((v2)[984]) < (v1)) {

if (((v2)[992]) < (v1)) {
if (((v2)[996]) < (v1)) {

if (((v2)[998]) < (v1)) {
if (((v2)[999]) < (v1)) {

return -1;
} else {

if ((0) || (((v2)[999]) != (v1))) {
return -1;

} else {
return 999;

}
}

} else {
if (((v2)[997]) < (v1)) {

if ((0) || (((v2)[998]) != (v1))) {
return -1;

} else {
return 998;

}
...

The result is equally bad.
Let us suspend the variable ‘left’. In Figure 68 this is indicated via the C-Mix

specifier ‘residual’ which unconditionally forces a variable to be classified dynamic. The
result is shown below.

/* This program was generated automatically */
int bsearch_1 (int v1, int *(v2))
{

int v4;
v4 = -1;
if (((v2)[511]) < (v1)) {

v4 = 488;
goto cmix_label3;

} else {
goto cmix_label3;

}

258

www.manaraa.com

cmix_label3:
if (((v2)[(v4) + (256)]) < (v1)) {

v4 += 256;
goto cmix_label6;

} else {
goto cmix_label6;

}
cmix_label6:

if (((v2)[(v4) + (128)]) < (v1)) {
v4 += 128;
goto cmix_label9;

} else {
goto cmix_label9;

}
...

This program is much better! Its size is O(log(n)) of the table size, whereas the two
residual programs above exhibit size O(n).

The table below reports speedups and code blowups. The upper part of the table
shows the result of specialization with dynamic ‘key’ and ‘table’. The runtimes are user
seconds, and the sizes are number of program lines. All experiments were conducted on a
Sun SparcStation II with 64 Mbytes of memory, and programs were compiled by the Gnu
C compiler with option ‘-O2’.

Program Runtime (sec) Code size (lines)
Orig Spec Speedup Orig Spec Blowup

Table dynamic
bsearch1() 39.1 20.3 1.9 26 10013 385
bsearch2() (left stat) 40.4 23.8 1.6 28 10174 363
bsearch2() (left dyn) 40.4 26.5 1.5 28 98 3.5

Table static
bsearch1() 39.1 13.5 2.8 26 10013 385
bsearch2() 40.4 10.7 3.7 28 10174 363

The classical binary search function (Figure 67) gave the largest speedup: 1.9 com-
pared to 1.5. The price paid for the 6 seconds the specialized version of ‘bsearch1’ is faster
than the specialized version of ‘bsearch2’ is high: the residual version of ‘bsearch1()’ is
385 times larger; the residual version of ‘bsearch2()’ is only 4 times larger.

The lower part of the table shows speedups by specialization to a static ‘table’.
Variant 2 yields a slightly larger speedup, but the programs are comparable with respect
to code size.

The pleasing result of this small experiment is the good speedup obtained by spe-
cialization of ‘bsearch2()’ despite the modest code blowup. The negative result is that
it by no means is obvious that the classical binary search function should be replaced
with a (slightly) less efficient routine before specialization. Even though it was not hard
to discover that ‘left’ should be suspended by looking at an annotated version of the
program, it is not obvious that such genius suspensions can be automated.

259

www.manaraa.com

9.3 Specialization and optimization

Program specialization aims at making programs more efficient; not slower. In this section
we study the interference between partial evaluation and classical optimizations such as
loop invariant motion, partial redundancy elimination and common subexpression elim-
ination. Traditional partial evaluation technology subsumes (inter-procedural) constant
folding, (some) dead code elimination, and loop unrolling.

9.3.1 Enabling and disabling optimizations

First a small illuminating example.

Example 9.3 Consider specialization of the following function where both parameters
are classified dynamic. The specialized function is shown in the middle. Since the loop is
static it has been unrolled.

int foo(int x, int y) int foo_1(int x, int y) int foo_2(int x, int y)
{ { {

int i = 0; x = 1;
while (i < 2) x = 1; y += 2 y += 2;

{ x = 1; y += 2; } x = 1; y += 2; y += 2;
return x + y; return x + y; return x + y;

} } }

Observe that the expression ‘x = 1’ is loop invariant. To the right, the residual pro-
gram obtained by loop hoisting the invariant before specialization is shown. Apparently,
function ‘foo 2()’ is preferable to function ‘foo 1()’.

Suppose that ‘x = 1’ was an “expensive” loop invariant. Then it might be the case
that ‘foo()’ is more efficient than ‘foo 1()’, due to the repeated computations of the
invariant. However, if we apply dead code elimination to ‘foo 1()’, it will be revealed
that the first ‘x = 1’ is dead, and we end up with ‘foo 2()’. End of Example

Lesson learned: specialization techniques may both enable and disable optimizations.
Partial evaluation normally enables local optimizations (inside basic blocks) since it

tends to produce large(r) basic blocks, e.g. due to unrolling of loops. Furthermore, larger
basic blocks give better exploitation of pipelined and parallel machines. As seen above, it
can also disable global (across basic blocks) optimizations (loop invariant code motion).
Seemingly, the optimizations being disabled by specialization should be applied before
partial evaluation. Can a classical optimization applied to the subject before partial
evaluation even improve residual programs? The example above seems to indicate an
affirmative answer.

Example 9.4 Binding-time analysis takes both branches of conditionals into considera-
tion. Suppose that dead-code elimination removes a branch of an if (possibly due to the
result of a constant folding analysis) containing an assignment of a dynamic value to a
variable. This may enable a more static division. End of Example

260

www.manaraa.com

9.3.2 Order of optimization

It is well-known that classical optimizations interact and give different results depending
on the sequence they are being applied [Whitfield and Soffa 1990]. For example, dead
code elimination does not enable constant propagation: elimination of code does not
introduce new constants.4 On the other hand, constant propagatation may enable dead
code elimination: the test of an if may become a constant. In the Gnu C compiler, the
jump optimization phase is run both before and after common subexpression elimination.

Let us consider some classical optimization techniques and their relation to partial
evaluation. In the following we are only interested in the efficiency of the residual program.
For example, applying common subexpression elimination (to static expressions) before
specialization may reduce the specialization time, but does not enhance the quality of
residual code.

Common Subexpression Elimination (CSE). Partial evaluation is invariant to com-
mon subexpression elimination (of dynamic expressions). Thus, CSE does not improve
beyond partial evaluation. On the other hand, specialization may enable candidates for
elimination due to increased size of basic blocks.

Invariant Code Motion (ICM). Since specialization tends to remove loops, new can-
didates for ICM are not introduced. On the contrary, as seen in Example 9.3, partial
evaluation may disable ICM.

Constant Propagation (CP). Partial evaluation includes constant propagation; thus
there is no reason to apply CP to subject programs. On the other hand, residual programs
may benefit from CP (constant folding) due to “lifted” constants, and the fact that
binding-time analysis is conservative.

Loop Fusion (LF). Loop fusion merges two loops, the objective being elimination of
control instructions. Partial evaluation is invariant to LF (on dynamic loops), and hence-
forth LF before specialization does not improve beyond LF applied to residual programs.

Consider the matrix multiplication program in Example 9.1, and suppose the inner
loop is suspended, e.g. to reduce code size. The residual program consists of a sequence
of loops.

for (c[0] = k = 0; k < N; k++) c[0] += ...
for (c[1] = k = 0; k < N; k++) c[1] += ...
for (c[2] = k = 0; k < N; k++) c[2] += ...

Loop fusion can bring these together.
Loop Unrolling (LU). Partial evaluation includes loop unrolling. Due to constant

folding, specialization may enable loop unrolling not present in the subject program. The
same effect can be achieved by double specialization.

Strip Mining (SM). The aim of strip mining is to decrease the number of logically
related instructions such that e.g. the body of a loop can be in the instruction cache, or
the active part of a table can be held in registers. Partial evaluation seems to produce a
negative effect. It generates large basic blocks and unrolls loops, decreasing the likelihood
for cache hits. On the other hand, exploitation of pipelining may be enhanced.

4However, consider the interaction with constant folding!

261

www.manaraa.com

Optimization CSE ICM CP LF LU SM SR RAA LVA

PE before opt. + − + + + − + −
PE after opt. + +/− +

Figure 69: Interaction between partial evaluation and optimization

Strengh Reduction (SR). Strength reduction has been applied to the loop below.

for (i = 1; i < 6; i++) for (i = 1; i < 6; i++)
{ n = 5 * i; ...} { n = n + 5; ... }

Suppose that ‘n’ is dynamic. The following residual programs result from specialization.

n = 5; ... n = n + 5; ...
n = 10; ... n = n + 10; ...
n = 15; ... n = n + 15; ...
n = 20; ... n = n + 20; ...
n = 25; ... n = n + 25; ...

Obviously, SR degrades the effect of partial evaluation in this case. However, suppose
now that the loop has the following appearance.

for (i = j = 1; i < 6; i++, j++) for (i = j = 1; i < 6; i++, j++)
{ n = 5 * j; ... } { n = n + 5; ... }

where ‘n’ and ‘i’ are static, and ‘j’ dynamic. In this case SR will be of benefit: ‘n’ is
separated from the dynamic ‘j’ (without SR the variable ‘n’ would have to be classified
dynamic).

Register Allocation/Assignment (RAA). The aim is to keep active variables in registers,
to reduce the number of load/store instructions. Due to data structure splitting, the
number of variables may grow, causing register allocation pressure, and an increased
number of cache misses.

Live-Variable Analysis (LVA). We have seen that live-variable analysis improves the
quality of residual code (with respect to code size).

The considerations are summarized in Figure 69. A ‘+’ in the first line means that par-
tial evaluation may enable some optimization otherwise not possible and therefore improve
the efficiency of the code. A ‘−’ means that partial evaluation potentially may disable
some optimizations otherwise possible. A ‘+’ in the second line means that specialization
will benefit from the optimization. To our knowledge, optimization of programs before
partial evaluation has not been exploited in any existing partial evaluator. Automated
binding-time improvements can be seen as an exception, though.

As the case with strength reducion clearly shows, the decision whether to apply opti-
mization before or after partial evaluation is non-trivial.

262

www.manaraa.com

9.3.3 Some observations

As illustrated by strength reduction, optimizations may change binding time classifica-
tion of variables. Another example of this is dead-code elimination: elimination of dead,
dynamic code may allow a variable to be classified static. A natural procedure would be
to (automatically) inspect binding times to detect expressions that may benefit from clas-
sical optimizations before specialization. However, this (may) require the binding-time
analysis to be iterated, which may be expensive. We leave as future work to character-
ize the optimizations/transformations that profitably can be applied before binding-time
analysis.

We suspect that transformation into a form where expressions are cleanly binding-time
separated may enhance efficiency of residual programs. Two immediate problems pop up:
the residual programs become less readable (“high level assembler”), and the provision of
useful feedback is rendered hard.

9.4 Experiments

This section reports results obtained by experiments with C-Mix. We provide four ex-
amples: specialization of a lexical analyis, some numerical analysis routines, a ray tracer,
and a system for ecological modelling.

9.4.1 Lexical analysis

Lexical analysis is often a time-consuming task in compilers, both for humans and the
compiler. Carefully hand-coded scanners can out-perform automatically generated scan-
ners, e.g. constructed via ‘lex’, but in practice, lex-produced scanners are employed. The
reason is straightforward: it is a tedious job to implement lexical analysis by hand. Waite
has made an experiment where a hand-coded scanner was compared to a lex-generated
scanner [Waite 1986]. He found that hand-coded scanner was 3 times faster.5

In this example we test whether specialization of a naive lexical analysis yields an
efficient lexer.

We use the scanner developed by Pagan as example [Pagan 1990, Chapter 4]. It is a
simple program ‘Scan’ that uses a so-called ‘trie’ for representation of tokens. Conversion
of a language description (e.g. in the same form as a lex-specification) into a trie is almost
trivial. The drive loop consists of 5 lines of code.

The following experiment was conducted. We specified the C keywords (32 tokens) as
a trie table and as a lex-specification. White space was accepted but no comments. The
trie-table consisted of 141 entries, the lex scanner had 146 DFA states. The scanner was
specialized with respect to the trie, giving the program ‘Spec’. The lex-generated scanner
‘Lex’ was produced by ‘flex’ using default setting (i.e. no table compression).

The results are shown below, and has been generated on a Sun SparcStation II with
64 Mbytes of memory, and programs were compiled by the Gnu C compiler with option
‘-O2’.

5Thanks to Robert Glück, who directed us to this paper.

263

www.manaraa.com

Time Size
(sec) Speedup (lines) Blowup

Scan Spec Lex Scan Lex Scan Spec Lex Scan Lex

9.3 6.0 11.6 1.6 1.9 239 3912 1175 16.3 3.3

As input we used 20 different keywords each appearing 40,000 times in an input stream.
The times reported are user seconds. The speedups are between the specialized scanner,
and ‘Scan’ and ‘Lex’, respectively. As can be seen, Pagan’s scanner is comparable to the
lex produced scanner. However, the specialized version is 1.6 times faster than the general
version, and nearly twice as fast as the lex-produced scanner.

The sizes of the programs are determined as follows. The size of ‘Scan’ includes the
driver and the table. The size of ‘Lex’ is the size of the file ‘lex.yy.c’ (as output by
‘flex’) and includes the tables and the driver. As can be seen, the specialized version of
‘Scan’ is 3 times bigger than the lex-produced scanner.

9.4.2 Scientific computing

Scientific computing results in many programs that are prime candidates for optimization.
In this example two algorithms for solving linear algebraic equations taken from a standard
book and specialized. The experiment was carried out by Peter Holst Andersen from
DIKU.

The program ‘ludcmp’ implements LU decomposition of matrices. The program
‘ludksb’ solves a system linear equations by forward and backward substitution. Both
programs are “library” programs and stem from the book [Press et al. 1989].

Both programs were specialized using C-Mix with respect to matrix dimension 5. On
a Sun SparcStation 10 with 64 Mbytes of memory, with programs compiled by the Gnu
C compiler using option ‘-O2’, the following results were measured.

Program Time Size
Orig Spec Speedup Orig Spec Blowup

ludcmp 34.9 23.1 1.5 67 1863 27
ludksb 15.1 7.6 2.0 27 247 9

Specialization of the LU decomposition program gives a speedup of 1.5. The special-
ized version of the solving function is almost twice as fast as the original version. Most
of the speedup is due to unrolling of loops. Since the LU decomposition algorithm has
a complexity of O(N3), the size of the residual program grows fast. The speedup is,
however, rather surprising given the simple algorithms.

9.4.3 Ray tracing

The ray tracer example has been developed by Peter Holst Andersen from DIKU, and
was the first realistic application of C-Mix [Andersen 1993c].

A ray tracer is a program for showing 3-dimensional scenes on a screen. It works
by tracing light rays from a view point through the view to the scene. The idea is to

264

www.manaraa.com

specialize with respect to a fixed scene. It should be noted that the ray tracer was highly
optimized before partial evaluation was applied.

The experiments were performed on an HP 9000/735, and programs compiled by
the Gnu C compiler with option ‘-O2’. Program sizes are given as the object file’s size
(Kbytes).

Scene Time Size
Orig Spec Speedup Orig Spec Blowup

17 14.79 8.91 1.7 102.5 61.6 0.6
23 11.25 6.61 1.7 102.5 93.2 0.9
24 16.31 9.29 1.8 102.5 98.9 1.0
25 33.02 17.57 1.9 102.5 96.9 0.9
26 6.75 4.02 1.7 102.5 66.5 0.6
27 10.80 6.17 1.8 102.5 68.2 0.7
28 16.89 9.27 1.8 102.5 67.1 0.7

As can be seen, a speedup of almost 2 is obtained, that is, the specialized program is
twice as fast as the original. The reduction in size is due to elimination of unused scenes
in the original program.

9.4.4 Ecological modelling

The Ecological modeling system SESAME is a system for simulation of biological processes
in the north sea. The system has been developed by the Netherlands Institute for Sea
Research (NIOZ), and has kindly been made to our disposal in a collaboration between
DIKU and NIOZ. The experiments reported have been conducted by Peter Holst Andersen
from DIKU.

The system models the flow of gases and nutrients between fixed so-called boxes (ar-
eas). The simulation is performed by extrapolation of the development via the solution
of a number of differential equations.

The ERSEM model (a particular ecological model) consists of 5779 lines of C code,
and the SESAME libraries (e.g. a differential equation solver) consists of 6766 lines of
code. The experiments were done on a Sun SparcStation 10 with 64 Mbytes of memory.
The model simulated 10 days and 2 years, respectively.

Simulation time Orig model Spec model Speedup

10 days 57,564 36,176 1.6
2 years 4,100,039 3,174,212 1.3

The speedup is modest, but still significant given the long execution times. Rather
surprisingly, a substantial part of the speedup is due to specialization of the ‘pow()’
function to a fixed base. Furthermore, inlining of functions turned out to be essential for
good results. The sizes of the residual programs are comparable to the original model.

Specialization of a future version of SESAME including advanced similation features
is expected to yield larger speedups.

265

www.manaraa.com

9.5 Conclusion and further work

We have considered partial evaluation in practice, and reported on several experiments
with C-Mix.

9.5.1 Future work

The implementation of the system can be improved in a number of ways. The sepa-
rated analysis developed in Chapter 7 seems to be of major pragmatic value, and its
implementation should be completed.

The investigation of the interaction between partial evaluation and traditional pro-
gram optimization should be continued. More generally, the causes and effects between
specialization and efficiency need a deeper understanding. We are considering various
transformations of subject programs before both binding-time analysis and the generating-
extension transformation to improve efficiency of residual programs.

The preliminary analysis of this chapter has cast some light on the deficiencies of the
speedup analysis in Chapter 8, but further development is needed for accurate estimation
of speedups.

The case study in Section 9.2 illustrated the dependency between partial evaluators
and subject programs. Notice in particular that a variable was suspended — the aim
of binding time improvements is normally the contrary. The example is discouraging
with respect to further automation of binding-time improvements. When should static
variables be suspended to avoid unacceptable code blowup? When and where should
binding time improvements be applied? More practical experiments seem necessary in
order to get a deeper understanding of what pays off.

9.5.2 Summary

We have provided a number of experiments that clearly demonstate the power of partial
evaluation. The speedups reported here are considerably smaller than those obtained in
the functional language community, but this is to be expected. A speedup of 2 is still,
however, a significant improvement. The speedup should be compared with the improve-
ments obtainable by classical optimizations, e.g. advanced register allocation typically
shorten the execution time by less than 10 %. Finally, we would like to stress that we
have considered realistic programs; none of the programs have been “cooked” to show
good results.

The experiments have also shown that more development is needed to automate and
simplify the application of specialization to realistic programs. The rewriting of code
often necessary today should be reduced, and feedback indicating where specialization
should be applied would be useful.

266

www.manaraa.com

Chapter 10

Improvements and Driving

A partial evaluator is not a genius program transformer. Sometimes it gives good results,
other times it fails to optimize even simple programs. Only rather naive transformations
are performed, and in particular no decisions are based on intelligence or clever “insight”.
As well-known, partial evaluators are often sensitive to changes in subject programs.
Experience has shown that minor modifications may propagate through a programs in
most unexpected ways.

On the other hand, program specialization via partial evaluation is fully automatic
unlike most stronger transformation paradigms. Limited speedups of 2, say, matter in
practice. By nature, it is hard to obtain substantial speedups by optimization of low-level,
efficient languages like C. Many of the “improvements” possible in functional languages
originate from very general programming constructs, which are not present in C, e.g.
pattern matching.

In this chapter we first consider binding-time improvements that aim to give better
results. Gradually, we introduce more powerful improvements that require insight into
the subject program, and therefore are less amenable for automation. Next we shift to
consider the strictly stronger transformation technique driving.

The main contribution of this chapter is the initial steps toward automation of driving
for C. The driving transformation technique is a part of supercompilation, that so far only
have been automated to some extent. We show by a case example how positive context
propagation, which is the essence of driving, can transform a naive string matcher into a
Knuth, Morris and Pratt matcher — a task partial evaluation cannot accomplish.

Next we introduce generating super-extensions which is the supercompilation equiva-
lent to generating extensions in partial evaluation. Some first developments are reported,
and perspectives are discussed.

The aim of this chapter is not to present a catalogue of useful “tricks” and “hacks”
that can be applied to subject programs. In our opinion it should not be necessary to
rewrite programs in order to apply a program transformation. Ideally, it must be “strong”
enough to detect “naive” program constructs, and handle these in a convenient way.
Manual rewritings are not an option for a programmer trying to optimize big programs.
Currently these goals are not fulfilled in the case of even very simple languages.

267

www.manaraa.com

10.1 Introduction

As evident from Chapter 9, partial evaluation is no panacea. Specialization pays off in
form of significant speedups on some programs, and in other cases partial evaluation
achieves almost nothing. Theoretically, a program’s run-time can be improved by a con-
stant only, as proved in Chapter 8. Unfortunately, partial evaluation is rather sensitive
to even minor changes of the input. Ideally a partial evaluator must itself bring programs
into a form suitable for specialization.

In practice, binding-time improving rewriting must be applied on some programs to
obtain good result. The aim of such rewriting is (normally) to reveal static information.

10.1.1 A catalogue of transformation techniques

Several program transformation techniques, stronger than partial evaluation, have been
studied in the literature. The most have been formulated for small, purely functional or
declarative languages, and not generalized to realistic applications. Furthermore, many
of the methods seems less amenable for automation, and have only been demonstrated on
contrived examples.

A list of program transformation paradigms are listed below, in order of “power”.

1. Classical optimizations, for instance common subexpression elimination, loop hoist-
ing and elimination of partial redundancies [Aho et al. 1986].

2. Partial evaluation based on known evaluation of expressions, reduction of unknown
expressions, specialization and unfolding of functions [Jones et al. 1993].

3. Driving and generalized partial evaluation [Glück and Klimov 1993,Jones 1994].

4. Supercompilation [Turchin 1986].

5. Fold/unfold transformations [Burstall and Darlington 1977].

Notice that all the mentioned techniques are source-to-source optimizations; we do not
here consider language-to-language transformations (compilation) that produce optimized
low-level implementations of in-efficient high-level formalisms. A notable example of the
latter is the APTS system by Paige and Cai, which compiles set-based formulas into
efficient C [Cai and Paige 1993].

Even though partial evaluation includes many of the classical optimizations, it differs
pronouncedly by the availability of partial input. Naturally, partial evaluation may exploit
“static” input present in program in the form of tables or the like, but we will disregard
this for a moment. On the other hand, the fold/unfold transformation methodology
may produce considerably improvements without any program input, e.g. deforestation
[Wadler 1988].1

1Deforestation aims at eliminating immediate data structures in functional languages, and can be
formulated via a set of fold/unfold rules.

268

www.manaraa.com

Driving can be seem as partial evaluation plus context propagation, which is closely
related to theorem proving. The idea is that in the then-branch of an ‘if (x < 22)’, we
know that ‘x’ must be less than 22 even though ‘x’ is unknown. Thus, if the then-branch
contains a test ‘if (x == 22)’, theorem proving can be applied to show that the test must
evaluate to false. Propagation of information into the then-branch is called positive context
propagation, and into the else-branch negative context propagation. Clearly, it is harder
to assert that “something” is false, so driving using only positive context propagation
is not uncommon. Driving has been partly automated for (small) functional languages
[Glück and Klimov 1993], but generalization to realistic languages remain, as well as a
handle on the prevailing termination problem.

Driving can be seen as an instance of the general technique known as supercompilation.
Currently, supercompilation has been formulated and implemented for the Refal language
[Turchin 1986].

All the above transformation techniques can be formulated in the framework of fold/-
unfold transformations.2 Fold/unfold consists of four rules: instantiate, define, fold, and
unfold. To our knowledge automation of the general technique has not been achieved.
Some special cases, however, have been systematized. For example, a restricted version
of deforestation has been incorporated in the Glasgow Haskell compiler [Gill et al. 1993].

10.1.2 An example of a genius transformation

An example of a genius — or “intelligent” — optimization in the framework of fold/unfold
transformations is given in Figure 70.3 We consider the general definition of the Fibonacci
function

int fib(int n)
{

if (n < 2) return n;
else return fib(n-1) + fib(n-2);

}

For ease of presentation we assume a pair structure definition

struct Pair { int x, y; };

and a function ‘p()’ that “pairs” two integers and returns a pair.
In step 1 we define a function ‘iter()’. This definition is a Eureka! step; it is invented

because it seems useful for the further transformation. In step 2 we instantiate ‘iter()’
to 2 and unfold the definition of ‘fib()’. In step 3, the function definition ‘addx()’
eliminates the common subexpression ‘fib(n-1)’.

In step 4 we recognize the iteration in ‘iter()’, and transform the function into a
loop as step 5.4 In step 6 we unfold ‘iter()’ into ‘fib()’.

Finally, by unfolding of the sum function ‘sum()’ and splitting of the pair, we end up
with the iterative definition of ‘fib’ in step 7.

2At least in the case of functional languages.
3This section is modelled after [Jones et al. 1993, Page 353].
4This is not a fold/unfold step, by an application of a well-known transformation schema.

269

www.manaraa.com

1. int fib(int n)
{

if (n < 2) return n; else return sum(iter(n-1));
}
struct Pair iter(int n) int sum(struct Pair p)
{ {

return pair(fib(n),fib(n-1)); return p.x + p.y;
} }

2. struct Pair iter(int n)
{

if (n < 2) return pair(1,0);
else return p(fib(n-1)+fib(n-2),fib(n-1));

}
3. struct Pair iter(int n) struct Pair addx(struct Pair p)

{ { int t = p.x;
if (n < 2) return pair(1,0); p.x += p.y; p.y = t;
else return addx(fib(n-1),fib(n-2)); return p;

} }
4. struct Pair iter(int n)

{
if (n < 2) return pair(1,0);
else return addx(iter(n-1));

}
5. struct Pair iter(int n)

{
int i; struct Pair x = pair(1,0);
for (i = 2; i <= n; i++) x = addx(x);
return x;

}
6. int fib(int n)

{
if (n < 2) return n;
else { int i; struct Pair x = pair(1,0);

for (i = 2; i <= n - 1; i++) x = addx(x);
return sum(x);

}
}

7. int fib(int n)
{

if (n < 2) return n;
else {

int i, x = 1, y = 0, t;
for (i = 2; i <= n - 1; i++) t = x, x += y, y = t;
return x + y;

}
}

Figure 70: Transformation of the Fibonacci function

270

www.manaraa.com

The net effect is that an exponential algorithm has been transformed into a linear algo-
rithm. This is far beyond what partial evaluation can accomplish, but the transformation
also appears hard to automate.

10.1.3 Overview of chapter

This chapter is organized as follows. In Section 10.2 we present a case study: generation of
KMP matchers by partial evaluation. In Section 10.3 we investigate driving, and automate
the example from Section 10.2. Section 10.4 contains related work, and Section 10.5
discuss further work and conclude.

10.2 Case study: generation of a KMP matcher

We will study specialization of a naive pattern matcher to a fixed pattern. The matcher
runs in time O(mn), where m is the length of the pattern and n the length of the string.
The specialized matcher runs in time O(n). We did a similar experiment in Chapter 3,
then we specialized ‘strstr()’ with respect to a fixed ‘needle’. In this section we are
slightly more ambitious: the goal is to automatically generate an efficient Knuth, Morris
and Pratt (KMP) matcher [Knuth et al. 1977], which we did not achieve in Chapter 3.

To meet these goals we extend partial evaluation with positive context propagation.
Positive context propagation means that the positive outcome of tests are propagated
into the then-branch of ifs. Via “theorem proving” this can be exploited to decide some
otherwise dynamic tests. In this example it is used to shift the (static) pattern more than
one step with respect to the (dynamic) string.

In this section we obtain the effect of positive context propagation by rewriting of
the string matcher, i.e. we apply a binding-time improvement. In Section 10.3 we present
some initial steps towards automation of the technique, also known as driving. Notice that
partial evaluation (as described in Chapter 3) cannot achieve the effect of transforming
a naive string matcher into a KMP matcher unless we apply some manual binding-time
improvements. Thus, driving is a strictly stronger transformation technique.

10.2.1 A naive pattern matcher

We use a slightly modified version of the string matcher ‘strindex’ presented in Kernighan
and Ritchie [Kernighan and Ritchie 1988, Page 69]. In accordance with the ‘strstr()’
standard library function, our version returns a pointer to the first match in the string,
rather than an index. The function is listed in Figure 71. It is considerably simpler (and
slower!) than the Gnu implementation we considered in Chapter 3, but it works the same
way.

The matcher compares the characters of the pattern ‘p’ and the string ‘s’ one by one,
and shift the pattern one step in case of a mis-match. Partial evaluation of ‘strindex’ to
static input ‘p = "aab"’ yields the following residual program.

271

www.manaraa.com

/* strindex: return pointer to t in s, NULL otherwise */
char *strindex(char *p, char *s)
{

int k;
for (; *s != ’\0’; s++) {

for (k = 0; p[k] != ’\0’ && p[k] == s[k]; k++);
if (p[k] == ’\0’) return s;

}
return NULL;

}

Figure 71: A naive pattern matcher (Kernighan and Ritchie page 69)

char *strindex_0(char *s)
{

for (; *s != ’\0’; s++)
if (’a’ == s[0])

if (’a’ == s[1])
if (’b’ == s[2])

return s;
return 0;

}

The complexity of the result is O(n) and the number of nested ifs is m.5 Partial
evaluation has unrolled the inner loop, which eliminates some tests and jumps. The
residual program is more efficient than the original program, but the improvement is
modest.

10.2.2 Positive context propagation

The problem of the naive pattern matcher is well-known: information is thrown away!
The key insight, initially observed by Knuth, Morris and Pratt, is that when a mis-match
occurs, the (static) pattern provides information about a prefix of the (dynamic) string.
This can be employed to shift the pattern more than one step such that redundant tests
are avoided.

Consider the inner for loop which rewritten into a if-goto becomes

k = 0;
l: if (p[k] != ’\0’ && p[k] == s[k])

{
k++;
goto l;

}
if ...

where the test is dynamic due to the dynamic string ‘s’. Hence, partial evaluation spe-
cializes the if.

5Specialization of this program depends crucially on algebraic reduction of the && operator.

272

www.manaraa.com

/* strindex: return pointer to t in s, NULL otherwise */
char *strindex(char *p, char *s)
{

char ss[strlen(p)+1], *sp;
int k;
for (; *s != ’\0’; s++) {

for (k = 0; p[k] != ’\0’ && (p[k] == ss[k] || p[k] == s[k]); k++)
ss[k] = p[k];

if (p[k] == ’\0’) return s;
/* Shift prefix */
for (sp = ss; *sp = *(sp + 1); sp++);

}
return NULL;

}

Figure 72: Naive pattern matcher with positive context propagation

Consider specialization of the then-branch. Even though ‘s’ is dynamic we know
that (at run-time) the content of ‘s[k]’ must equal ‘p[k]’ — otherwise the test would
not be fulfilled, and then the then-branch would not be taken. The idea is to save this
information, and use it to determine forthcoming tests on ‘s[k]’. Gradually as the pattern
is “matched” against the dynamic string, more information about ‘s’ is inferred.

We introduce an array ‘ss[strlen(p)]’ to represent the known prefix of ‘s’. The
array is initialized by ‘\0’ (not shown). The modified program is shown in Figure 72.

The test in the inner loop is changed to use the (static) prefix ‘ss’ of ‘s’ if information
is available, and the (dynamic) string ‘s’ otherwise.

l: if (p[k] != ’\0’ && (p[k] == ss[k] || p[k] == s[k]))

First, the current position of the pattern ‘p[k]’ is compared to ‘ss[k]’. If the test is true,
algebraic reduction of ‘||’ will assure that the test comes out positively. If no information
about the string ‘s’ is available (which manifest itself in ‘ss[k]’ being 0), a dynamic test
against the string ‘s[k]’ is performed.

In the body of the loop, the prefix string ‘ss[k]’ is updated by ‘p[k]’, and if the
match fails, the prefix is shifted (like the pattern is shifted with respect to the string).

The binding-time improvement amounts to positive context propagation since we ex-
ploit that ‘p[k] == s[k]’ in the then-branch of the if statement.

10.2.3 A KMP matcher

Specialization of the improved matcher to the pattern ‘p = "aab"’ gives the following
residual program.6

6We have restructured the output and renamed variables to aid readability

273

www.manaraa.com

char *strindex_1 (char *s)
{

while (*s != ’\0’)
if ((0) || (’a’ == s[0]))

cmix_label7:
if ((0) || (’a’ == s[1]))

if ((0) || (’b’ == s[2]))
return v1;

else {
s++;
if (*s != ’\0’)

goto cmix_label7;
else

return 0;
}

else
s++;

else
s++;

return 0;
}

The matcher is almost perfect — the only beauty spot being the test immediately
before the goto cmix label7. To remove this, negative context propagation is required.
The careful reader can recognize a KMP matcher. In the case of a match ‘aa’ where the
next character is not a ‘b’, the match proceeds at the same position; not from the initial
‘a’.

Some benchmarks are shown below. All experiments were conducted on a Sun Sparc-
Station II with 64 Mbytes of memory, and programs were compiled by the Gnu C compiler
using option ‘-O2’. Each match was done 1,000,000 times.

Input Runtime (sec)
Pattern String Naive Spec KMP Speedup

aab aab 1.8 0.9 0.7 2.5
aab aaaaaaaaab 10.2 5.3 4.0 2.5
aab aaaaaaaaaa 12.5 6.5 4.9 2.5
abcabcacab babcbabcabcaabcabcabcacabc 19.2 10.2 7.3 2.6

‘Naive’ is the naive matcher, ‘Spec’ is the specialized version of ‘Naive’, and ‘KMP’ is the
specialized version of the improved version of ‘Naive’. The speedup is between ‘Naive’
and ‘KMP’.

The experiment is similar to the one carried out in Chapter 3. We see that the naive
matcher actually is faster than the Gnu implementation of ‘strstr()’. The reason being
the (expensive) calls to ‘strchr’. In practice, the Gnu version will compete with the naive
version on large strings. However, compare the residual programs. The KMP matcher is
twice as fast as the specialization of Gnu ‘strstr()’.

Remark: the last example is the one used in the original exposition of the KMP
matcher [Knuth et al. 1977].

274

www.manaraa.com

10.3 Towards generating super-extensions

In the previous section we achieved automatic generation of a KMP matcher by manual
revision of a naive string matcher. The trick was to introduce positive context propagation.
In this section we consider adding positive context propagation to partial evaluation such
that specialization of a naive matcher gives an efficient KMP matcher. Partial evaluation
and context propagation is known as driving.

We present the preliminary development in form of a case study. More work is needed
to automate the technique, and we encounter several problems during the way.

10.3.1 Online decisions

Driving is intimately connected with online partial evaluation. During specialization,
variables may change status from “unknown” to “known”, e.g. due to positive context
propagation of a test ‘x == 1’, where ‘x’ previously was unknown. Further, information
such as “‘x’ is unknown but greater than 1” must be represented somehow.

Existing experimental drivers, most notably the one developed by Glück and Klimov
[Glück and Klimov 1993], are based on symbolic evaluation, and constraints on variables
are represented via lists. However, as we have argued previously, specialization of realistic
languages is best achieved via execution of generating extensions.

We will therefore pursue another approach, which uses a mixture of direct execution
and online specialization techniques. In particular, the idea is to transform programs into
generating extensions that include context propagation. We call a generating extension
that performs context propagation a generating super-extension.

In this first development we will mainly restrict ourselves to positive context propa-
gation (the extension to a limited form of negative context propagation is easy, though),
and only consider propagation of scalar values. Thus, specialization of pointers, structs
etc. is as described in Chapter 3.7 Furthermore, we will assume that subject programs
are pre-transformed such that no sequence points occur in test expressions, e.g. the ||
operator is transformed into nested ifs.

For ease of presentation we program in the C++ language, which allows user-defined
overloading of operators.

10.3.2 Representation of unknown values

We assume a binding-time analysis that classifies as static all computations that do not
depend on unknown input. The problem is the representation of dynamic integer values
in the generating super-extension. During the execution, they may change status to
“known” and represent a (static) value, and other times they may be “unknown”, but
possibly constrained.

In the generating super-extension we represent dynamic (integer) values with the fol-
lowing class.

7From now on we ignore these constructs.

275

www.manaraa.com

enum BTime { Equal, Less, Greater, Unknown };
class Int
{

BTime btag; /* binding time */
int val; /* value (if known) */
Code code; /* piece of code */

public:
Int(void) { btag = Equal; val = 0; }
Int(int v) { btag = Equal; val = v; }
BTime btime(void) { return btag; }
BTime btime(BTime b) { return btag = b; }
int value(void) { return val; }
int value(int v) { return val = v; }
void syntax(Code c) { code = c; }

}

An ‘Int’ consists of a binding-time tag which indicates the status of the value. ‘Equal’
means the value has a known value which equals ‘val. ‘Less’ means the value is unknown,
but is less than ‘val. ‘Unknown’ means that the value is unknown. In the latter cases, the
field ‘code’ will contain some code representing the value, e.g. the representation of ‘x +

y’, where both ‘x’ and ‘y’ are unknown.

Example 10.1 Consider the naive string matcher in Figure 71. We wish to infer infor-
mation about the unknown input ‘s’. The problem is that even the size of the array ‘s’
points to is unknown. Thus, the amount of information to be stored is unknown. Drivers
for functional languages use dynamic allocation for representation of inferred informa-
tion. We shall take a simpler (and more restrictive) approach. We will assume that ‘s’ is
a pointer to a known array with unknown content.

We define the ‘s’ in the generating super-extension as follows

Code strindex(char *p, Int *s)
{ /* s is pointer to array of unknown chars */

int k;
...

}
where the array is assumed “big” enough. End of Example

10.3.3 Theorem proving

We define the following equality operator on ‘Int’.

Int operator==(Int &v1, Int &v2)
{

Int v;
switch (v1.btime()) {

case Equal:
switch (v2.btime()) {

case Equal: v.btime(Equal); v.value(v1.value() == v2.value()); break;
case Less: if (v1.value() > v2.value())

v.btime(Equal), v.value(0);

276

www.manaraa.com

else
v.btime(Unknown); v.syntax(...);

break;
...
return v;

}

The idea is to check the status of the operands during evaluation of the (dynamic)
== operator. If both operands happen to be known, the test can be carried out, and the
result is known. If the second operand is unknown but known to be less than n, the test
is definitely false if n is less than the value of the first operand. And so on. Notice that
comparisons are implemented by the underlying == operator (on integers), hence there
is no “symbolic” evaluation of concrete values.

In a similar style can other operators, <, > etc. be defined.

Example 10.2 Driving is known to produce more terminating programs than subject
programs. The problem is already apparent in the definition above. In the second case,
if ‘v2’ was non-terminating but its value (anyway) known to be less than the value of
‘v1’, the net effect would be that the operand was discarded. Thus, non-terminating
computation may be thrown away. End of Example

The operator definitions implement a (limited) form of theorem proving which can be
exploited to decide dynamic tests.

Example 10.3 Consider the following program fragment in the generating extension for
‘strindex’. Suppose that ‘p[k]’ is static and ‘s[k]’ dynamic, but has (currently) a known
value.

cmixIf(p[Int(k)] == s[Int(k)], ... , ...)

Even though the test must be classified dynamic (by the binding-time analysis), it can
(in the generating super-extension) be decided (in this case), since ‘s[k]’ has a known
value. Thus, there is no need to specialize both branches.

(Remarks. Since ‘k’ is an integer value, it must be “lifted” to an ‘Int’ in the array index
expressions. We assume an operator ‘[]’ on ‘Int’ has been defined.) End of Example

In practice, this can be implemented by the ‘cmixIf()’ code generating function by
as follows:

cmixIf(Int test, Label m, Label n)
{

switch (test.btime()) {
case Equal: if (test.value()) goto m; /* True! */

else goto n; /* False! */
case Less: if (test.value()<0) goto n; /* False! */

else ... specialize m,n ... /* Don’t know! */
case Unknown: ... specialize m,n ... /* Don’t know! */
...

}
}

277

www.manaraa.com

where the binding time of the test value is checked to see if the test can be decided.
This is similar to algebraic reduction of operators, and deciding dynamic tests, as

described in Chapter 3.

10.3.4 Context propagation

Context propagation amounts to exploiting the positive and negative outcome of tests
in the branches of dynamic if. Observe the following. If an if has to be specialized,
evaluation of the test expression (in the generating super-extension) returns an ‘Int’
containing the syntactic representation of the expression.

We can use this as follows. Before the then-branch is specialized, we traverse the
(representation of the) test expression and perform positive context propagation. More
precisely, we apply a function ‘cmixPosContext()’ to the code for the test.

void cmixPosContext(Code e)
{

switch (e.type) {
case x == v: x.btime(Equal); x.value(v); break;
case x < v: x.btime(Less); x.value(v); break;
case x != 0: x.btime(Unknown);
...

}
}

The function updates the value of the ‘Int’-variable ‘x’, exploiting that the test ex-
pression “must” evaluate to true (at run-time). Similarly, a function ‘cmixNegContext()’
can be defined.

Example 10.4 We have side-stepped an important problem. When should the context
propagation functions be applied? The problem is that both functions update the values
of the variables in the generating super-extension. One possibility is shown below.

void cmixIf(Int test, Label m, Label n)
{

/* Apply theorem proving to decide the test */
...
/* No luck. Then specialize both branches */
else_store = cmixCopyStore();
cmixPosContext(e); /* Positive context propagation */
cmixPendinsert(m); /* Record for specialization */
cmixRestoreStore(else_store);
cmixNegContext(e); /* Negative context propagation */
cmixPendinsert(n); /* Record for specializion */
return new_label;

}

The active store is copied before the positive context propagation is performed, to be used
for negative context propagation. This is a rather expensive solution.8

8It works, though, on small examples like ‘strindex’.

278

www.manaraa.com

The situation is slightly better if only positive context propagation is performed. In
that case a copy of the active store for the else-branch can be inserted into the pending
list; the positive context propagation performed, and specialization proceed immediately
in the then-branch. End of Example

Some final remarks. The approach outlined in this section relies on the assumption
that ‘Int’ values are copied at specialization points as static variables. The representation
described cannot represent information such as “v is less that 10 and greater than 0”.
Obviously, the definition of ‘Int’ can be extended to support lists of constraints, at the
price of extra memory usage and a more complicate mechanism for copying of ‘Int’ values.

10.3.5 Is this driving?

We have shown a simple form of positive and negative context propagation in generating
extensions. However, is this driving? And how does the methods relate to the benefits of
generating extensions, e.g. direct execution and direct representation of static values?

The techniques are sufficient for (hand-coding) of a generating super-extension of the
naive string matcher,9 and it seems clear that the transformation can be automated.
Obviously, more is needed to handle more realistic examples.

The theorem proving part of this section is currently used in C-Mix in a limited form.
For example, without the algebraic reductions of the || operator in the ‘strindex’ function,
the results from specialization would be useless. At the time of writing we have only
experimented with positive context propagation on contrived examples. Generalization is
not straightforward.

It can be argued whether “known” values are executed directly or interpreted. In
this section we have somehow side-stepped the problem by using a language supporting
overloading of operators. If we had to code the similar functions in C, we would begin
writing a symbolic evaluator. A main point is, however, that we use a binding-time
analysis classification in parallel with “online” driving. Static values are represented
directly, and there is no interpretation overhead on the evaluation of those.

10.4 Related work

Various “tricks” for improvement of partial evaluation are well-known among users of
partial evaluators [Jones et al. 1993, Chapter 12]. Some of these have been automated
but program specialization is still to some extend a “handicraft”. For example, the Similix
systems incorporate a CPS transformation that gives better exploitation of static values
[Bondorf 1992].

Section 10.2 was inspired by the work by Glück and Klimov on supercompilation
[Glück and Klimov 1993]. Coen et al. uses theorem proving to improve specialization
[Coen-Porisini et al. 1991]. These two approaches are based on symbolic evaluation of
subject programs. Kemmere et al. employ theorem proving for symbolic validation of

9A strong reservation: recall that we have assume the size of ‘s’ is known — which was not the case
in the original example.

279

www.manaraa.com

Pascal programs [Kemmerer and Eckmann 1985]. Ghezzi et al. uses symbolic evaluation
with value constraints to simplify programs [Ghezzi et al. 1985].

Glück and Jørgensen have experimented with automatic generation of stronger special-
izers using “information-carrying” interpreters [Glück and Jørgensen 1994]. Even though
interesting results have been created, the method suffers from the need of a self-interpreter
for the subject language.

10.5 Future work and Conclusion

We have considered driving and illustrated the possible structure of a generating super-
extension. Generating super-extension differs most notably from driving via symbolic
evaluation by the use of a binding-time analysis to classify as static definitely known
values.

10.5.1 Further work

The work on generating super-extensions have recently been undertaken, and much work
remains to extend the technique to a larger part of C. We believe that driving should be
limited to base type values only, to avoid problems with representations, termination and
memory usage.

Experiments are needed to evaluate the benefit of driving compared to ordinary partial
evaluation.

10.5.2 Conclusion

We have initiated the development of generating super-extension for the C programming
language, an extension to partial evaluation. By the means of a case study we showed
generation of a KMP string matcher from a naive matcher — a result partial evaluation
cannot produce — and outlined an approach which automates the generation.

We plan to incorporate positive context propagation into the C-Mix system in the
future.

280

www.manaraa.com

Chapter 11

Conclusion

We have developed a partial evaluator C-Mix for the C programming language. In Chap-
ter 3 we studied program specialization for the C language, and described a generating
extension transformation. The Chapters 4, 5, 6, 7, and 8 developed several analyses for
C. A pointer analysis approximates the set of objects a pointer may point to at runtime.
A binding-time analysis computes the binding times of expressions. A side-effect analysis
and an in-use analysis approximates side-effects and the set of objects used by a func-
tion, respectively. A separate and incremental binding-time analysis support modular
languages. A speedup analysis estimates prospective speedups. We provided several ex-
perimental results, and discussed the interaction between partial evaluation and program
optimization in Chapter 9. Finally, we considered the stronger transformation technique
driving in Chapter 10.

A list of contributions this thesis contains can be found in Chapter 1.

11.1 Future work

This thesis has developed and documented a partial evaluation system for the Ansi C
programming language. In each chapter we have listed a number of specific topics for
further work. In this section we provide more general directions for future work.

11.1.1 Program specialization and transformation

The generating-extension transformation was developed to overcome problems with a
previous version of C-Mix based on traditional specialization via symbolic evaluation.
It has very successfully proved its usefulness in practice. However, there is room for
improvement. We outline some more prevailing, and urgent, problems here.

Our long term goal is that no rewriting of subject programs are necessary to obtain
good results. Ways to automatical binding time improvements should be studied and
implemented. In particular, separation of data structures seem important.

Specialization of imperative languages is problematic due to the memory usage. The
problem is tightly coupled with the notion of non-oblivious algorithms. Many dynamic
tests (may) cause extreme memory usage. Way to improve upon this is needed.

281

www.manaraa.com

The termination problem hinders practical usage of partial evaluation. Even though
it often is rather trivial to rewrite a program to prevent infinite specialization, this should
be automated. The methods studied for functional languages seems insufficient for im-
perative languages. A fruitful way to proceed may be by general constant propagation
that can guarantee that a variable only is bound to a finite number of (static) values.

11.1.2 Pointer analysis

Pointer analysis is the most important analysis for the C language. Other analyses depend
on its precision, efficiency and the amount of gathered information.

The analysis we have developed is theoretically coarse but seems to work fine in prac-
tice. Experiments with the accuracy should be performed: does improved precision pay
off, and what is the price in terms of efficiency? An obvious step is to extend the analy-
sis into a flow-sensitive analysis, to avoid the spurious propagation of unrelated point-to
information. Furthermore, our analysis is exhaustive in the sense that it computes infor-
mation for all variants of functions. Clearly, this may be time consuming, and a way to
limit the static-call graph to “relevant” variants should be investigated.

11.1.3 Binding-time analysis

The binding-time analysis has turned out to be very successful in practice. It is extremely
fast, and its accuracy seems acceptable.

Work on integration of binding-time directed transformations aiming at improving the
effect of specialization should be undertaken.

11.1.4 Data-Flow analysis

We have developed to classical analyses for the C programming language by exploring
point-to information. The efficiency of the analyses can be improved as well as their
precision. The in-use analysis should be coupled with analysis such as “last” use, “used
only once” to improve the memory usage in generating extensions.

11.1.5 Separate analysis

The separate binding-time analysis has at the time of writing not been implemented in
the C-Mix system, but is expected to be a major improvement. Work on separate pointer
analysis is needed to obtain truly separate analysis. Further, extension into polyvariant
analysis should be considered. A possibility is to build an inter-modular call-graph.

11.1.6 Speedup analysis

The speedup analysis is rather coarse, and often gives the minor informative answer that
an arbitrary high speedup can be obtained. We have found that the lower bound often
is a good estimate of the actual speedup, but tighter approximation would be useful.

282

www.manaraa.com

Further, the result of the analysis should be applied to suspend specialization of program
fragments, that contributes with little speedup.

Residual code size analysis is still an un-exploited area.

11.1.7 Experiments

The current implementation of the C-Mix system can be improved in a number of ways.
Long term projects are to incorporate better separation of binding times. Transformation
into a simpler language seems advantageous, but since experiments have clearly demon-
strated the usefulness of informative feedback, we are unwilling to give up the high-level
representation until a reasonable compromise have been found.

The study of the interaction between partial evaluation and classical optimization
should be continued. Application of optimizations before partial evaluation seems to be
a new approach.

11.1.8 Driving

The investigation of driving and generating super-extensions has recently begun. Much
work is needed to automate and generalize the principles. Currently, theorem proving has
turned out to be useful and reasonable to incorporate into generating extensions. More
experiments are needed to assess the benefit of positive context propagation.

11.2 Final remarks

To our knowledge, C-Mix is the first partial evaluator handling a full-scale, pragmatically
oriented language. The techniques are now so developed and mature that realistic exper-
iments in professional software engineering can begin. We believe that experiments will
reveal several areas for future work.

The applications of C-Mix in several experiments have given promising results, and
demonstrated that the basic principles work. We hope that the results of this thesis may
be useful in future software engineering.

283

www.manaraa.com

Bibliography

[Aho et al. 1974] A.V. Aho, J.E. Hopcoft, and J.D. Ullman, The Design and Analysis of
Computer Algorithm, Addison Wesley, 1974.

[Aho et al. 1986] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Tech-
niques, and Tools, Addison Wesley, 1986.

[Allen and Cocke 1976] F.E. Allen and J. Cocke, A Program Data Flow Analysis Proce-
dure, Communications of the ACM Vol 19, No 3 (March 1976) 137–147.

[Ammerguellat 1992] Z. Ammerguellat, A Control-Flow Normalization Algorithm and Its
Complexity, IEEE Transactions on Software Engineering Vol 18, No 3 (March 1992)
237–251.

[Andersen 1991] L.O. Andersen, C Program Specialization, Master’s thesis, DIKU, Uni-
versity of Copenhagen, Denmark, December 1991. DIKU Student Project 91-12-17,
134 pages.

[Andersen 1992] L.O. Andersen, C Program Specialization, Technical Report 92/14,
DIKU, University of Copenhagen, Denmark, May 1992. Revised version.

[Andersen 1993a] L.O. Andersen, Binding-Time Analysis and the Taming of C Pointers,
in Proc. of the ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’93, pages 47–58, ACM SIGPLAN, June 1993.

[Andersen 1993b] L.O. Andersen, Partial Evaluation of C, chapter 11 in “Partial Evalu-
ation and Automatic Compiler Generation” by N.D. Jones, C.K. Gomard, P. Sestoft,
pages 229–259, C.A.R. Hoare Series, Prentice-Hall, 1993.

[Andersen 1993c] P.H. Andersen, Partial Evaluation Applied to Ray Tracing, August
1993. Student report.

[Andersen and Gomard 1992] L.O. Andersen and C.K. Gomard, Speed-up Analysis
in Partial Evaluation: Preliminary results, in Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’92), pages 1–7, June 1992.
YALEU/DCS/RR-909, Yale University.

[Andersen and Mossin 1990] L.O. Andersen and C. Mossin, Binding Time Analysis via
Type Inference, October 1990. DIKU Student Project 90-10-12, 100 pages. DIKU,
University of Copenhagen.

284

www.manaraa.com

[Baier et al. 1994] R. Baier, R. Zöchlin, and R. Glück, Partial Evaluation of Numeric
Programs in Fortran, in Proc. of ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 1994. (To appear).

[Baker 1977] B.S. Baker, An Algorithm for Structuring Flowgraphs, Journal of the ACM
Vol 24, No 1 (January 1977) 98–120.

[Ball 1979] J.E. Ball, Predicting the Effects of Optimization on a Procedure Body, in
Conf. Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pages 214–220, ACM, January 1979.

[Banning 1979] J.P. Banning, An Efficient way to find the side effects of procedure calls
and the aliases of variables, in Conf. Record of the Sixth Annual ACM Symposium on
Principles of Programming Languages, pages 29–41, ACM, January 1979.

[Barzdin 1988] G. Barzdin, Mixed Computation and Compiler Basis, in Partial Evalu-
ation and Mixed Computation, edited by D. Bjørner, A.P. Ershov, and N.D. Jones,
pages 15–26, North-Holland, 1988.

[Beckman et al. 1976] L. Beckman et al., A Partial Evaluator, and Its Use as a Program-
ming Tool, Artificial Intelligence 7,4 (1976) 319–357.

[Bentley 1984] J. Bentley, Programming Pearls: Code Tuning, Communications of the
ACM Vol 27, No 2 (February 1984) 91–96.

[Berlin and Weise 1990] A. Berlin and D. Weise, Compiling Scientific Code Using Partial
Evaluation, IEEE Computer 23,12 (December 1990) 25–37.

[Birkedal and Welinder 1993] L. Birkedal and M. Welinder, Partial Evaluation of Stan-
dard ML, Master’s thesis, DIKU, University of Copenhagen, August 1993.

[Blazy and Facon 1993] S. Blazy and P. Facon, Partial Evaluation for the Understanding
of Fortran Programs, in Proc. of SEKE’93 (Software Engineering and Knowledge
Engineering), pages 517–525, Juni 1993.

[Bondorf 1990] A. Bondorf, Self-Applicable Partial Evaluation, PhD thesis, DIKU, Uni-
versity of Copenhagen, 1990.

[Bondorf 1992] A. Bondorf, Improving binding times without explicit CPS-conversion, in
1992 ACM Conference on Lisp and Functional Languages. San Francisco, California,
pages 1–10, June 1992.

[Bondorf and Dussart 1994] A. Bondorf and D. Dussart, Handwriting Cogen for a CPS-
Based Partial Evaluator, in Proc. of ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 1994.

[Bondorf and Jørgensen 1993] A. Bondorf and J. Jørgensen, Efficient analyses for realistic
off-line partial evaluation, Journal of Functional Programming 3,3 (July 1993) 315–
346.

285

www.manaraa.com

[Bourdoncle 1990] F. Bourdoncle, Interprocedural abstract interpretation of block struc-
tured languages with nested procedures, aliasing and recursivity, in PLILP’90, pages
307–323, Springer Verlag, 1990.

[Bulyonkov and Ershov 1988] M.A. Bulyonkov and A.P. Ershov, How Do Ad-Hoc Com-
piler Constructs Appear in Universal Mixed Computation Processes?, in Partial Eval-
uation and Mixed Computation, edited by D. Bjørner, A.P. Ershov, and N.D. Jones,
pages 65–81, North-Holland, 1988.

[Burke 1993] M. Burke, Interprocedural Optimization: Eliminating Unnecessary Recom-
pilation, ACM Transaction on Programming Languages and Systems 15,3 (July 1993)
367–399.

[Burstall and Darlington 1977] R.M. Burstall and J. Darlington, A transformation system
for developing recursive programs, Journal of Association for Computing Machinery
24,1 (January 1977) 44–67.

[Cai and Paige 1993] J. Cai and R. Paige, Towards Increased Productivity of Algorithm
Implementation, in Proc. of the First ACM SIGSOFT Symposium on the Foundation
of Software Engineering, edited by D. Notkin, pages 71–78, ACM, December 1993.

[Callahan et al. 1986] D. Callahan, K.D. Cooper, K. Kennedy, and L. Torczon, Interpro-
cedural Constant Propagation, in Proc. of the SIGPLAN’86 Symposium on Compiler
Construction, (ACM SIGPLAN Notices, vol 21, no 7), pages 152–161, ACM, June
1986.

[Callahan et al. 1990] D. Callahan, A. Carle, M.W. Hall, and K. Kennedy, Constructing
the Procedure Call Multigraph, IEEE Transactions on Software Engineering Vol 16,
No 4 (April 1990) 483–487.

[Chase et al. 1990] D.R. Chase, M. Wegman, and F.K. Zadeck, Analysis of Pointers and
Structures, in Proc. of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation, pages 296–310, ACM, June 1990.

[Choi et al. 1993] J. Choi, M. Burke, and P. Carini, Efficient Flow-Sensitive Interprocedu-
ral Computation of Pointer-Induced Aliases and Side Effects, in Conf. Record of 20th.
Annual ACM Symposium on Principles of Programming Languages, pages 232–245,
ACM, January 1993.

[Chow and Rudmik 1982] A.L. Chow and A. Rudmik, The Design of a Data Flow An-
alyzer, in Proc. of the SIGPLAN’82 Symposium on Cimpiler Construction, pages
106–113, ACM, January 1982.

[Coen-Porisini et al. 1991] A. Coen-Porisini, F. De Paoli, C. Ghezzi, and D. Mandrioli,
Software Specialization Via Symbolic Execution, IEEE Transactions on Software En-
gineering 17,9 (September 1991) 884–899.

286

www.manaraa.com

[Commitee 1993] X3J11 Technical Commitee, Rationale for American National Standard
for Information systems — Programming Language C, Available via anonymous FTP,
1993.

[Consel 1993a] C. Consel, Polyvariant Binding-Time Analysis for Applicative Languages,
in Proc. of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation PEPM’93, pages 66–77, ACM SIGPLAN, June 1993.

[Consel 1993b] C. Consel, A Tour of Schism: A Partial Evaluation System for Higher-
Order Applicative Languages, in Proceedings of ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-based Program Manipuation, pages 145–154, ACM,
June 1993.

[Consel and Danvy 1993] C. Consel and O. Danvy, Tutorial Notes on Partial Evaluation,
in In Proc. of Symposium on Principles of Programming Languages, pages 492–501,
ACM, January 1993.

[Consel and Jouvelot 1993] C. Consel and P. Jouvelot, Separate Polyvariant Binding-
Time Analysis, 1993. Manuscript.

[Cooper and Kennedy 1988] K.D. Cooper and K. Kennedy, Interprocedural Side-Effect
Analysis in Linear Time, in Proc. of the SIGPAN’88 Conference on Programming
Language Design and Implementation, pages 57–66, ACM, June 1988.

[Cooper and Kennedy 1989] K. Cooper and K. Kennedy, Fast Interprocedural Alias Anal-
ysis, in Conf. Record of the Sixteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 49–59, ACM, January 1989.

[Cooper et al. 1986a] K.D. Cooper, K. Kennedy, and L. Torczon, The Impact of Inter-
procedural Analysis and Optimization in the Rn Programming Environment, ACM
Transactions on Programming Languages and Systems 8,4 (October 1986) 491–523.

[Cooper et al. 1986b] K.D. Cooper, K. Kennedy, L. Torczon, A. Weingarten, and M.
Wolcott, Editing and Compiling Whole Programs, in Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environment, edited by P. Henderson, pages 92–101, ACM, January 1986.

[Cooper et al. 1993] K.D. Cooper, M.W. Hall, and K. Kennedy, A Methodology for Pro-
cedure Cloning, Computer Languages Vol 19, No 2 (April 1993) 105–117.

[Cousot and Cousot 1977] P. Cousot and R. Cousot, Abstract Interpretation: a Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints, in Proc. of 4th Annual ACM Symposium on Principles of Programming
Languages, pages 238–252, ACM, January 1977.

[Cytron and Gershbein 1993] R. Cytron and R. Gershbein, Efficient Accommodation of
May-Alias Information in SSA Form, in In proc. of ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation, pages 36–45, ACM, June 1993.

287

www.manaraa.com

[Davidson and Holler 1988] J.W. Davidson and A.M. Holler, A Study of a C Function
Inliner, SOFTWARE — Practice and Experience Vol 18(8) (August 1988) 775–790.

[Davidson and Holler 1992] J.W. Davidson and A.M. Holler, Subprogram Inlining: A
Study of Its Effects on Program Execution Time, IEEE Transactions on Software
Engineering Vol 18, no 2 (February 1992) 89–102.

[De Niel et al. 1991] A. De Niel, E. Bevers, and K. De Vlaminck, Partial Evaluation of
Polymorphically Typed Functional Languages: The Representation Problem, in Anal-
yse Statique en Programmation Équationnelle, Fonctionnelle, et Logique, Bordeaux,
France, Octobre 1991. (Bigre, vol. 74), edited by M. Billaud et al., pages 90–97,
IRISA, Rennes, France, 1991.

[Edelson 1992] D.R. Edelson, Smart Pointers: They’re Smart, but They’re Not Pointers,
in Proc. of USENIX Association C++ Technical Conference, 1992.

[Emami 1993] M. Emami, A Practical Interprocedural Alias Analysis for an Optimiz-
ing/Parallelizing Compiler, Master’s thesis, McGill University, Montreal, September
1993. (Draft).

[Emami et al. 1993] M. Emami, R. Ghiya, and L.J. Hendren, Context-Sensitive Inter-
procedural Points-to Analysis in the presence of Function Pointers, Technical Re-
port ACAPS Technical Memo 54, McGill University, School of Computer Science,
3480 University St, Montreal, Canada, November 1993.

[Ershov 1977] A.P. Ershov, On the Partial Computation Principle, Information Process-
ing Letters 6,2 (April 1977) 38–41.

[Ferrante et al. 1987] J. Ferrante, K. Ottenstein, and J. Warren, The Program Depen-
dence graph and its use in optimization, ACM Transactions on Programming Lan-
guages and Systems 9(3) (July 1987) 319–349.

[Freeman et al. 1990] B.N. Freeman, J. Maloney, and A. Borning, An Incremental Con-
straint Solver, Communications of the ACM 33,1 (January 1990) 54–63.

[Futamura 1971] Y. Futamura, Partial Evaluation of Computation Process – An Ap-
proach to a Compiler-Compiler, Systems, Computers, Controls 2,5 (1971) 45–50.

[Ghezzi et al. 1985] C. Ghezzi, D. Mandrioli, and A. Tecchio, Program Simplication
via Symbolic Interpretation, in Lecture Notes in Computer Science, pages 116–128,
Springer Verlag, 1985.

[Ghiya 1992] R. Ghiya, Interprocedural Analysis in the Presence of Function Pointers,
Technical Report ACAPS Memo 62, McGILL University, School of Computer Science,
3480 University St, Montreal, Canada, December 1992.

[Gill et al. 1993] A. Gill, J. Launchbury, and S.L. Peyton Jones, A Short Cut to De-
forestation, in Proceeding of Conference on Functional Programming Languages and
Computer Architecture, pages 223–232, ACM, June 1993.

288

www.manaraa.com

[Glück and Jørgensen 1994] R. Glück and J. Jørgensen, Generating Optimizing Special-
izers, in IEEE Computer Society 1994 International Conference on Computer Lan-
guages, IEEE Computer Society Press, May 1994. (To appear).

[Glück and Klimov 1993] R. Glück and A.V. Klimov, Occam’s Razor in Metacomputa-
tion: the Notion of a Perfect Process Tree, in Proc. of 3rd Int. Workshop on Static
Analysis (Lecture Notes in Computer Science 724), edited by G. Filè P. Cousot,
M. Falaschi and A. Rauzy, pages 112–123, Springer Verlag, 1993.

[Gomard 1990] C.K. Gomard, Partial Type Inference for Untyped Functional Programs,
in 1990 ACM Conference on Lisp and Functional Programming, Nice, France, pages
282–287, ACM, 1990.

[Gomard and Jones 1991a] C.K. Gomard and N.D. Jones, Compiler Generation by Par-
tial Evaluation: a Case Study, Structured Programming 12 (1991) 123–144.

[Gomard and Jones 1991b] C.K. Gomard and N.D. Jones, A Partial Evaluator for the
Untyped Lambda-Calculus, Journal of Functional Programming 1,1 (January 1991)
21–69.

[Graham and Wegman 1976] S.L. Graham and M. Wegman, A Fast and Usually Linear
Algorithm for Global Data Flow Analysis, Journal of the Association for Computing
Machinery Vol 23, No 1 (January 1976) 171–202.

[Gross and Steenkiste 1990] T. Gross and P. Steenkiste, Structured Dataflow Analysis for
Arrays and its Use in an Optimizing Compiler, Software — Practice and Experience
Vol 20(2) (February 1990) 133–155.

[Gurevich and Huggins 1992] Y. Gurevich and J.K. Huggins, The Semantics of the C Pro-
gramming Language, in CSL’92 (Computer Science Logic), pages 274–308, Springer
Verlag, 1992. Errata in CSL’94.

[Hall 1991] M.W. Hall, Managing Interprocedural Optimization, PhD thesis, Rice Univer-
sity, April 1991.

[Hansen 1991] T.A. Hansen, Properties of Unfolding-Based Meta-Level Systems, in Proc.
of ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (Sigplan Notices, vol. 26, no. 9, pages 243–254, ACM, 1991.

[Haral 1985] D. Haral, A Linear Time Algorithm for Finding Dominators in Flow Graphs
and Related Problems, in Proc. of the seventeenth Annual ACM Symposium on Theory
of Computing, pages 185–194, ACM, May 1985.

[Harrison 1977] W.H. Harrison, Compiler Analysis of the Value Range for Variables, IEEE
Transactions on Software Engineering Vol 3(3) (May 1977) 243–250.

[Harrison III and Ammarguellat 1992] W. Harrison III and Z. Ammarguellat, A Pro-
gram’s Eye View of Miprac, in Proc. of 5th International Workshop on Languages and

289

www.manaraa.com

Compilers for Parallel Compution (Lecture Notes in Computer Science, 757), edited
by A. Nicolau U. Banerjee, D. Gelernter and D. Padua, pages 512–537, Springer
Verlag, August 1992.

[Hecht and Ullman 1975] M.S. Hecht and J.D. Ullman, A Simple Algorithm for Global
Data Flow Analysis Problems, SIAM Journal of Computing Vol 4, No 4 (December
1975) 519–532.

[Heintze 1992] N. Heintze, Set-Based Program Analysis, PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, October 1992. (Available
as technical report CMU-CS-92-201).

[Hendren and Hummel 1992] L.J. Hendren and J. Hummel, Abstractions for Recursive
Pointer Data Structures: Improving the Analysis and Tranformation of Imperative
Programs, in ACM SIGPLAN’92 Conference on Programming Language Design and
Implementation, pages 249–260, ACM, June 1992.

[Hendren et al. 1992] L. Hendren, C. Donawa, M. Emami, Justiani G.R. Gao, and B.
Sridharan, Designing the McCAT Compiler Based on a Family of Structured Inter-
mediate Representations, Technical Report ACAPS Memo 46, McGILL University,
School of Computer Science, 3480 University St, Montreal, Canada, June 1992.

[Hendren et al. 1993] L. Hendren, M. Emami, R. Ghiya, and C. Verbrugge, A Practi-
cal Context-Sensitive Interprocedural Analysis Framework for C Compilers, Technical
Report ACAPS Memo 72, McGILL University, School of Computer Science, 3480
University St, Montreal, Canada, July 1993.

[Henglein 1991] F. Henglein, Efficient Type Inference for Higher-Order Binding-Time
Analysis, in Functional Programming Languages and Computer Architecture, Cam-
bridge, Massachusetts, August 1991. (Lecture Notes in Computer Science, vol. 523),
edited by J. Hughes, pages 448–472, ACM, Springer Verlag, 1991.

[Henglein and Mossin 1994] F. Henglein and C. Mossin, Polymorphic Binding-Time Anal-
ysis, in Proc. of 5th. European Symposium on Programming (Lectures Notes in Com-
puter Science, vol 788), edited by D. Sannella, pages 287–301, Springer Verlag, April
1994.

[Hennessy 1990] M. Hennessy, The Semantics of Programming Languages: an elementary
introduction using structural operational semantics, John Wiley and Sons Ltd, 1990.

[Holst 1991] C.K. Holst, Finiteness Analysis, in Functional Programming Languages and
Computer Architecture, Cambridge, Massachusetts, August 1991. (Lecture Notes in
Computer Science, vol. 523), edited by J. Hughes, pages 473–495, ACM, Springer
Verlag, 1991.

[Holst and Launchbury 1991] C.K. Holst and J. Launchbury, Handwriting Cogen to
Avoid Problems with Static Typing, in Draft Proceedings, Fourth Annual Glasgow

290

www.manaraa.com

Workshop on Functional Programming, Skye, Scotland, pages 210–218, Glasgow Uni-
versity, 1991.

[Hood et al. 1986] R. Hood, K. Kennedy, and H.A Müller, Efficient Recompilation of
Module Interfaces in a software Development Environment, in Proc. of the SIG-
PLAN’86 Symposium on Compiler Construction, (ACM SIGPLAN Notices, vol 21,
no 7), pages 180–189, ACM, June 1986.

[Horwitz et al. 1987] S. Horwitz, A. Demers, and T. Teitelbaum, An Efficient General
Iterative Algorithm for dataflow Analysis, Acta Informatica 24 (1987) 679–694.

[Hughes 1998] J. Hughes, Backward Analysis of Functional Programs, in Partial Evalu-
ation and Mixed Computation, edited by D. Bjørner, A.P. Ershov, and N.D. Jones,
pages 187–208, North-Holland, 1998.

[Hwu and Chang 1989] W.W. Hwu and P.P. Chang, Inline Function Expansion for Com-
piling C Programs, in Proc. of the SIGPLAN’89 Conference on Programming Lan-
guage Design and Implementation, pages 246–255, June 1989.

[ISO 1990] Programming Languages—C, ISO/IEC 9899:1990 International Standard,
1990.

[Jones 1988] N.D. Jones, Automatic Program Specialization: A Re-Examination from
Basic Principles, in Partial Evaluation and Mixed Computation, edited by D. Bjørner,
A.P. Ershov, and N.D. Jones, pages 225–282, North-Holland, 1988.

[Jones 1989] N.D. Jones, Computer Implementation and Application of Kleene’s S-
m-n and Recursion Theorems, in Logic from Computer Science, edited by Y.N.
Moschovakis, pages 243–263, Springer Verlag, 1989.

[Jones 1990] N.D. Jones, Partial Evaluation, Self-Application and Types, in Automata,
Languages and Programming. 17th International Colloquium, Warwick, England.
(Lecture Notes in Computer Science, vol. 443), edited by M.S. Paterson, pages 639–
659, Springer Verlag, 1990.

[Jones 1993] N.D. Jones, Constant Time Factors Do Matter, in STOC’93. Symposium on
Theory of Computing, edited by Steven Homer, pages 602–611, ACM Press, 1993.

[Jones 1994] N.D. Jones, The Essence of Partial Evaluation and Driving, in Logic, Lan-
guage, and Computation (Lecture Notes of Computer Science), edited by N.D. Jones
and M. Sato, pages 206–224, Springer Verlag, April 1994.

[Jones and Nielson 1994] N.D. Jones and F. Nielson, Abstract Interpretation: a Seman-
tics-Based Tool for Program Analysis, in Handbook of Logic in Computer Science,
Oxford University Press, 1994. 121 pages. To appear.

[Jones et al. 1989] N.D. Jones, P. Sestoft, and H. Søndergaard, Mix: A Self-Applicable
Partial Evaluator for Experiments in Compiler Generation, Lisp and Symbolic Com-
putation 2,1 (1989) 9–50.

291

www.manaraa.com

[Jones et al. 1993] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Au-
tomatic Program Generation, C.A.R. Hoare Series, Prentice-Hall, 1993. (ISBN 0-13-
020249-5).

[Kam and Ullman 1976] J.B. Kam and J.D. Ullman, Global Data Flow Analysis and
Iterative Algorithms, Journal of the Association for Computing Machinery Vol 23,
No 1 (January 1976) 158–171.

[Kam and Ullman 1977] J.B. Kam and J.D. Ullman, Monotone Data Flow Analysis
Frameworks, Acta Informatica 7 (1977) 305–317.

[Kemmerer and Eckmann 1985] R.A. Kemmerer and S.T Eckmann, UNISEX: a UNIx-
based Symbolic EXecutor for Pascal, SOFTWARE—Practice and Experience Vol
15(5) (May 1985) 439–458.

[Kennedy 1975] K. Kennedy, Node Listing applied to data flow analysis, in Conference
record of 2nd ACM Symposium Principles of Programming Languages, pages 10–21,
ACM, January 1975.

[Kennedy 1976] K. Kennedy, A Comparison of Two Algorithms for Global Data Flow
Analysis, SIAM Journal of Computability Vol 5, No 1 (March 1976) 158–180.

[Kernighan and Ritchie 1988] B.W. Kernighan and D.M. Ritchie, The C programming
language (Draft-Proposed ANSI C), Software Series, Prentice-Hall, second edition
edition, 1988.

[Kildall 1973] G.A. Kildall, A Unified Approach to Global Program Optimization, in
Conference Record of the First ACM Symposium on Principles of Programming Lan-
guages, pages 194–206, ACM, January 1973.

[Klarlund and Schwartzbach 1993] N. Klarlund and M.I. Schwartzbach, Graph Types, in
Conf. Record of the 20th. Annual ACM Sumposium on Principles of Programming
Languages, pages 196–205, ACM, January 1993.

[Knuth et al. 1977] D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast Pattern Matching in
Strings, SIAM Journal of Computation Vol 6, No 2 (June 1977) 323–350.

[Lakhotia 1993] A. Lakhotia, Constructing call multigraphs using dependence graphs,
in Conf. Record of 20th. Annual ACM Symposium on Principles of Programming
Languages, pages 273–284, ACM, January 1993.

[Landi 1992a] W.A. Landi, Interprocedural Aliasing in the presence of Pointers, PhD
thesis, Rutgers, the State University of New Jersey, January 1992.

[Landi 1992b] W. Landi, Undecidability of Static Analysis, ACM Letters on Programming
Languages and Systems 1, 4 (December 1992) 323–337.

292

www.manaraa.com

[Landi and Ryder 1991] W. Landi and B.G. Ryder, Pointer-induced Aliasing: A Problem
Classification, in Eightteenth Annual ACM Sumposium on Principles of Programming
Languages, pages 93–103, ACM, January 1991.

[Landi and Ryder 1992] W. Landi and B.G. Ryder, A Safe Algorithm for Interprocedural
Pointer Aliasing, in ACM SIGPLAN’92 Conference on Programming Language Design
and Implementation, pages 235–248, ACM, June 1992.

[Larus and Hilfinger 1988] J.R. Larus and P.N. Hilfinger, Detecting Conflicts Between
Structure Acesses, in In proc. of the SIGPLAN’88 Conference on Programming Lan-
guage Design and Implementation, pages 21–34, ACM SIGPLAN, June 1988.

[Launchbury 1990] J. Launchbury, Projection Factorisations in Partial Evaluation, PhD
thesis, Dep. of Computing Science, University of Glasgow, Glasgow G12 8QQ, 1990.

[Launchbury 1991] J. Launchbury, A Strongly-Typed Self-Applicable Partial Evaluator,
in Functional Programming Languages and Computer Architecture, Cambridge, Mas-
sachusetts, August 1991. (Lecture Notes in Computer Science, vol. 523), edited by J.
Hughes, pages 145–164, ACM, Springer Verlag, 1991.

[Lengauer and Tarjan 1979] T. Lengauer and R.E. Tarjan, A Fast Algorithm for Find-
ing Dominators in a Flowgraph, ACM Transactions on Programming Languages and
Systems Vol 1, No 1 (July 1979) 121–141.

[Leone and Lee 1993] M. Leone and P. Lee, Deferred Compilation: The Automation of
Run-Time Code Generation, Technical Report CMU-CS-93-225, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, December 1993.

[Malmkjær 1992] K. Malmkjær, Predicting Properties of Residual Programs, in Proc.
of ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, pages 8–13, Yale University, Department of Computer Science, June
1992. (Available as technical report YALEU/DCS/RR-909).

[Malmkjær 1993] K. Malmkjær, Towards Efficient Partial Evaluation, in Proc. of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 33–43, ACM, June 1993.

[Marlowe and Ryder 1990a] T.J. Marlowe and B.G. Ryder, An Efficient Hybrid Algo-
rithm for Incremental Data Flow Analysis, in Conf. Record of the Seventeenth ACM
Symposium on Principles of Programming Languages, pages 184–196, ACM, January
1990.

[Marlowe and Ryder 1990b] T.J. Marlowe and B.G. Ryder, Properties of data flow frame-
works, Acta Informatica 28 (1990) 121–163.

[Mayer and Wolfe 1993] H.G. Mayer and M. Wolfe, InterProcedural Alias Analysis: Im-
plementation and Emperical Results, Software—Practise and Experience 23(11)
(Nobemver 1993) 1201–1233.

293

www.manaraa.com

[Meyer 1991] U. Meyer, Techniques for Partial Evaluation of Imperative Languages, in
Proc. of ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, New Haven, Connecticut. (Sigplan Notices, vol. 26, no. 9,
September 1991), pages 94–105, ACM, 1991.

[Meyer 1992] U. Meyer, Partielle Auswertung imperative Sprachen, PhD thesis, Justus-
Liebig-Universität Giessen, Arndtstrasse 2, W-6300 Giessen, August 1992. In German.

[Mogensen 1989] T.Æ. Mogensen, Binding Time Aspects of Partial Evaluation, PhD the-
sis, Dept. of Comp. Science, University of Copenhagen, Mar 1989.

[Neirynck 1988] A. Neirynck, Static Analysis of Aliases and Side Effects in Higher Order
Languages, PhD thesis, Computer Science, Cornell University, Ithaca, NY 14853-
7501, Feb. 1988.

[Nielson and Nielson 1988] H.R. Nielson and F. Nielson, Automatic Binding Time Anal-
ysis for a Typed λ-Calculus, Science of Computer Programming 10 (1988) 139–176.

[Nielson and Nielson 1992a] F. Nielson and H.R. Nielson, Two-Level Functional Lan-
guages, Cambridge Computer Science Text, 1992.

[Nielson and Nielson 1992b] H.R. Nielson and F. Nielson, Semantics with Applications,
John Wiley & Sons, 1992. ISBN 0 471 92980 8.

[Nirkhe and Pugh 1992] V. Nirkhe and W. Pugh, Partial Evaluation and High-Level Im-
perative Programming Languages with Applications in Hard Real-Time Systems, in
Conf. Record of the Nineteenth ACM Symposium on Principles of Programming Lan-
guages, Albuquerque, New Mexico, January 1992, pages 269–280, ACM, 1992.

[Olsson and Whitehead 1989] R.A. Olsson and G.R. Whitehead, A Simple Technique
for Automatic Recompilation in Modular Programming Languages, SOFTWARE–
Practise and Experience 19(8) (1989) 757–773.

[Pagan 1990] F.G. Pagan, Partial Computation and the Construction of Language Pro-
cessors, Prentice-Hall, 1990.

[Plotkin 1981] G. Plotkin, A Structural Approach To Operational Semantics, Technical
Report DAIMI FN-19, Computer Science Department, AArhus University, Denmark,
Ny Munkegade, DK 8000 Aarhus C, Denmark, 1981. Technical Report.

[Pohl and Edelson 1988] I. Pohl and D. Edelson, A to Z: C Language Shortcommings,
Computer Languages Vol 13, No 2 (1988) 5–64.

[Pollock and Soffa 1989] L.L. Pollock and M.L. Soffa, An Incremental Version of Iterative
Data Flow Analysis, IEEE: Transactions on Software Engineering 15,12 (December
1989) 1537–1549.

[Press et al. 1989] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Nu-
merical Recipes in C, Cambridge University Press, 1st edition, 1989.

294

www.manaraa.com

[Ramalingam and Reps 1994] G. Ramalingam and T. Reps, An Incremental Algorithm
for Maintaining the Dominator Tree of a Reducible Flowgraph, in Conf. Record of
the 21st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 287–296, ACM, January 1994.

[Richardson and Ganapathi 1989] S. Richardson and M. Ganapathi, Interprocedural Op-
timization: Experimental Results, Software — Practise and Experience 19(2) (Febru-
ary 1989) 149–169.

[Ross 1986] G. Ross, Integral C — A Practical Environment for C Programming, in
Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, edited by P. Henderson, pages 42–48, ACM,
January 1986.

[Ruf and Weise 1991] E. Ruf and D. Weise, Using Types to Avoid Redundant Special-
ization, in Proc. of the ACM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, PEPM’91, pages 321–333, ACM, June 1991.

[Ruggieri and Murtagh 1988] C. Ruggieri and T.P. Murtagh, Lifetime Analysis of Dy-
namically Allocated Objects, in Proc. of the Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages 285–293,
ACM, January 1988.

[Ryder 1979] B.G. Ryder, Constructing the Call Graph of a Program, IEEE Transactions
on Software Engineering Vol SE-5, No 3 (May 1979) 216–226.

[Ryder and Paull 1986] B.G. Ryder and M.C. Paull, Elimination Algorithms for Data
Flow Analysis, ACM Computing Surveys Vol 18, No 3 (September 1986) 277–316.

[Ryder et al. 1988] B.G. Ryder, T.J. Marlowe, and M.C. Paull, Conditions for Incremen-
tal Iteration: Examples and Counterexamples, Science of Computer Programming 11
(1988) 1–15.

[Rytz and Gengler 1992] B. Rytz and M. Gengler, A Polyvariant Binding Time Analysis,
in Proc. of ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 21–28, Yale University, Department of Computer Sci-
ence, June 1992. (Available as technical report YALEU/DCS/RR-909).

[Sagiv and Francez 1990] S. Sagiv and N. Francez, A Logic-Based Approach to Data Flow
Analysis Problems, in Programming Language Implementation and Logic Program-
ming: International Workshop PLILP’90, edited by P. Deransart and J. Maluszyński,
pages 278–292, Springer Verlag, August 1990.

[Schildt 1993] H. Schildt, The Annotated ANSI C Standard, Osborne, 1993. ISBN 0-07-
881952-0.

[Sestoft 1988] P. Sestoft, Automatic Call Unfolding in a Partial Evaluator, in Partial
Evaluation and Mixed Computation, edited by D. Bjørner, A.P. Ershov, and N.D.
Jones, pages 485–506, North-Holland, 1988.

295

www.manaraa.com

[Sharir and Pnueli 1981] M. Sharir and A. Pnueli, Two Approaches to Interprocedural
Data Flow Analysis, chapter 7, pages 189–233, Englewood Cliffs, NJ, 1981.

[Stallman 1991] R.M. Stallman, Using and Porting Gnu CC, Free Software Foundation
Inc, 675 Mass Ave, Cambridge, 1.39 edition, january 1991.

[Tarjan 1983] R.E. Tarjan, Data Structures and Network Algorithms, Society for Indus-
trial and Applied Mathematics, 1983.

[Turchin 1979] V.F. Turchin, A Supercompiler system based on the Langauge Refal, SIG-
PLAN Notices 14(2) (February 1979) 46–54.

[Turchin 1986] V.F. Turchin, The Concept of a Supercompiler, ACM TOPLAS 8,3 (July
1986) 292–325.

[Wadler 1988] P. Wadler, Deforestation: Transforming programs to eliminate trees, in
European Symposium on Programming, pages 344–358, Springer Verlag, March 1988.

[Waite 1986] W.M. Waite, The Cost of Lexical Analysis, SOFTWARE — Practice and
Experience Vol 16(5) (May 1986) 473–48.

[Weihl 1980] W.E. Weihl, Interprocedural Data Flow Analysis in the Presence of Pointers,
Proceure Variables, and Label Variables, in Conf. Record of the seventh Annual ACM
Symposium on Principles of Programming Languages, pages 83–94, ACM, January
1980.

[Whitfield and Soffa 1990] D. Whitfield and M.L. Soffa, An Approach to Ordering Op-
timizing Transformations, in Second ACM SIGPLAN Symposium on PPOPP (SIG-
PLAN Notices Vol 25, No 3), pages 137–146, ACM, March 1990.

[Yi 1993] K. Yi, Automatic Generation and Management of Program Analyses, PhD the-
sis, Center for Supercomuting and Development, University of Illinois at Urabana-
Champaign, 1993.

[Yi and Harrison 1992] K. Yi and W.L. Harrison, Interprocedural Data Flow Analysis for
Compile-time Memory Management, Technical Report 1244, Center for Supercomput-
ing Research and Development, University of Illinois at Urbana-Champaign, August
1992.

[Zadeck 1984] F.K. Zadeck, Incremental Data Flow Analysis in a Structured Editor, in
Proc. of the ACM Sigplan ’84 Symposium on Compiler Construction, pages 132–143,
ACM, June 1984.

[Zima and Chapman 1991] H. Zima and B. Chapman, Supercompilers for Vector and Par-
allel Computers, Frontier Series, ACM Press, 1991.

296

www.manaraa.com

Dansk sammenfatning

Programudvikling er problematisk. P̊a den ene side ønskes generelle og strukturerede
programmer, der er fleksible og overkommelige at vedligeholde. Prisen for modularitet
er effektivitet. Som regel er et specialiseret program, udviklet til en bestemt applikation,
væsentlig hurtigere end et generelt program. Udvikling af specialiserede programmer er
tidskrævende, og behovet for nye programmer synes at overstige kapaticiten af moderne
programudvikling. Nye metoder er nødvendige til at løse denne s̊akaldte programkrise.

Automatisk partiel evaluering er en program specialiseringsteknik som forener gener-
alitet med effektivitet. Denne afhandling præsenterer og dokumenterer en partiel evaluator
for programmeringssproget C.

Afhandlingen beskaeftigerer sig med programanalyser og -transformation, og inde-
holder følgende hovedresultater.

• Vi udvikler en generating-extension transformation. Formålet med transformatio-
nen er specialisering af programmer.

• Vi udvikler en pointer-analyse. Formålet med pointer-analyse er at approksimere
programmers brug af pointere. Pointer-analyse er essentiel for analyse og transfor-
mation af sprog som C.

• Vi udvikler en effektiv bindingtidsanalyse. Form̊alet med bindingtidsanalyse er at
bestemme, om evaluering af et udtryk kan ske p̊a oversættelsetidspunkt, eller først
p̊a køretid.

• Vi udvikler forskellige programanalyser til C, hvor vi udnytter information beregnet
af pointer-analysen.

• Vi udvikler metoder for separate analyse og specialisering af programmer. Realis-
tiske programmer er opdelt i moduler, hvilket stiller nye krav til programanalyse.

• Vi udvikler en automatisk effektivitetsanalyse, der estimerer den sandsynlige gevinst
ved specialisering, og vi beviser en øvre grænse for den opn̊aelige hastighedsforøgelse.

• Vi betragter programtransformationen driving, hvilket er en stærkere transforma-
tionsteknik end partiel evaluering.

• Vi fremlægger eksperimentielle resultater opn̊aet ved brug af en implementation af
systemet.

297

